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Inspiration

I Our background: network security, databases
→ We deal with massive data sets

I Lectures about streaming algorithms sparked our interest
I Approximate set membership
I Frequency estimation

I This project: explore and compare Bloom Filter variants
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Bloom filters – What the Fl*wer?

Usage
When dealing with a set or multiset and space is an issue an, a Bloom
filter (BF) may be tractable alternative.

I Synopsis data structure: substantially smaller than base data
I Price: only approximate answers

I False Positives (FPs)
I False Negatives (FNs)

I Applications
I Dictionaries
I Database joins
I Networking (web caches, IP traceback, multicast, P2P overlays)
I Blacklists (Google SafeBrowsing)
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Terminology
I Universe U
I N distinct items
I k independent hash functions h1, . . . , hk
I Vector V of m cells, i.e., m = |V |
I Set

I S = {x1, . . . , xn} where xi ∈ U and |S| = n

I Multiset / Stream
I S = {x1, . . . , xn} where xi ∈ U and |S| = n
I Cx =

{
ch1(x), . . . , chk(x)

}
counters of x

I fx = multiplicity (frequency) of x ∈ S
I Bloom filter estimate denoted by “hat”

I Ŝ, Ŝ, f̂x, . . .

I FP probability φP = P
[
x ∈ Ŝ |x /∈ S

]

I FN probability φN = P
[
x /∈ Ŝ |x ∈ S

]
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Basic Bloom Filter

I By Burton Bloom in 1970 [Blo70]
I V has m single-bit cells
I k independent hash functions
I FPs but no FNs

add(x)
V [hi(x)] = 1 for i ∈ [k]

query(x)
return V [h1(x)] == 1∧ · · · ∧ V [hk(x)] == 1
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Bloom Error EB

I Bloom error EB: falsely report x ∈ Ŝ although x /∈ S
I Start with empty V , set k bits to 1. For a fixed cell i,

P [V [i] = 0] =

(
1− 1

m

)k

I After n insertions,

P [[V [i] = 1] = 1−
(
1− 1

m

)kn

I Testing for membership involves hashing an item k times

P [EB] = φP =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
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Parameterization
I Fix m and n. Then,

k∗ = argmin
k

P [EB] =
⌊m
n

ln 2
⌋

I For k∗, P [EB] = (0.619)m/n

I For a fixed φP = P [EB],

m =

⌊
−n lnφP

(ln 2)2

⌋

κ =

⌊
− m

lnφP
(ln 2)2

⌋
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Definition
The capacity κ of a Bloom filter is the maximum number of items it can
hold until a given φP can no longer be guaranteed. A Bloom filter is full
when then number of added items exceeds κ.
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Counting Bloom Filters [FCAB98]

Supporting Multisets
I V has m cells of width w
I Counters c ∈ {0, . . . , 2w − 1}
I Incrementing introduces FPs
I Decrementing introduces FNs
I Counter overflows

add(x)
++V [hi(x)] ∀i ∈ [k]

remove(x)
−−V [hi(x)] ∀i ∈ [k]

count(x)
min
i∈[k]

{
V [hi(x)]

}
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Spectral Algorithms [CM03]

Minimum Selection (MS)
I Nothing fancy, we use it already for counting Bloom filters

mx = min
i∈[k]

{
V [hi(x)]

}

I MS estimator: f̂x = mx

I Claim 1: fx ≤ mx and P [fx 6= mx] = EB

Minimum Increase (MI)
I When adding an item x, only increase the cell(s) with mx

I Claim 2: EMI
B = O(EB)

I Claim 3: If x drawn uniformly from U , then

EMI
B =

EB

k
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Spectral Algorithms (cont’d)
Recurring Minimum (RM)

I Observation:
I Items with high EB less likely to have recurring minima
I ∼20% of the items have a unique minimum

I Keep track of items with unique minimum in secondary Bloom filter V2

add(x)
++V [hi(x)] ∀i ∈ [k]
mx ← mini∈k V [hi(x)] ∀i ∈ [k]
if x has RM in V then

return
end if
if x ∈ V2 then

++V2[h
2
i (x)] ∀i ∈ [k2]

else
V2[h

2
i (x)]+ = mx ∀i ∈ [k2]

end if

count(x)
mx ← mini∈k V [hi(x)] ∀i ∈ [k]
if x has RM in V then

return mx

end if
if x ∈ V2 then
m′

x ← mini∈k2
V [h2i (x)] ∀i ∈ [k2]

return m′
x

else
return mx

end if
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Bitwise Bloom Filter [LO07]
I l basic Bloom filters
I Vi has mi cells of width wi

I Counters c ∈ {0,∞)

I
{
hij : j ∈ [ki] ∧ i ∈ [l]

}

I Both FPs and FNs
I Overflows only across items

hl
khl

1 h1
1 h1

kh2
1 h2

k

add(x)
i← 0
while x ∈ Vi ∧ i < l do
Vi[h

i
j(x)] = 0 ∀j ∈ [ki]

end while
++Vi[h

i
j(x)] ∀j ∈ [ki]

count(x)
c← 0
for i← 0 to l − 1 do
if x ∈ Vi then
c← c+ 2l

end if
end for
return c

13 / 35



Ageing

I Streaming data: Bloom filters fills up over time
→ High number of FPs
I Can I haz sliding window?

x7
x0

→ Too expensive to keep old data around
I Want: Bloom Filter behaving like a FIFO
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Stable Bloom Filter [DR06]
I Basic Bloom filter with m fixed-width cells of size w
I Counters reflect age

1. Decrement d cells before each insertion
2. Adding an item x sets its counter to 2w − 1

add(x)
1: for i← 1 to d do
2: Draw α ∼ Unif {0,m− 1}
3: −−V [α]
4: end for
5: V [hi(x)] = 2w − 1 ∀i ∈ [k]

I Stable property: fraction of zeros will become fixed
I Bloom error when having reached the stable point

φP =

(
1−

(
1

1 + 1
d(1/k−1/m)

))

I Tweak parameters w, k,m, d to achieve the desired φP
15 / 35



A2 Buffering [Yoo10]

I Two bit vectors V1 and V2 where
|V1| = |V2| = m

2

I Swap both vectors when V1
becomes full (reached κa)

I Bloom error:

φP a = 1−
√
1− φP

I Optimal ka and κa:

k∗a =
⌊
− log2

(
1−

√
1− φP

)⌋

κ∗a =

⌊
m

2k∗a
ln 2

⌋

add(x)
1: if x ∈ V1 then
2: return
3: end if
4: V1 ← V1 ∪ {x}
5: if V1 has not reached κa then
6: return
7: end if
8: Flush V2
9: Swap V1 and V2

10: V1 ← V1 ∪ {x}

query(x)
return x ∈ V1 ∨ x ∈ V2
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libBf: Bloom Filter Library in C++11

Implementation of 6 Bloom filters

1. A2

2. Basic (+ counting)
3. Bitwise

4. Spectral (MI)
5. Spectral (RM)
6. Stable

I Policy-based design
I Hash: computes hash values
I Store: provides O(1) random-access counter storage
I Partition: maps hash values to cells

I Easy to use
I Header-only
I BSD-style license
I Interface fully documented (Doxygen)
I Available at https://github.com/mavam/libBf
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libBf: Policy-Based Architecture

Hash

Stable

Store

Bitwise A2 Timing

Partition

Default Hashing (Extended) 
Double Hashing

String-Array
IndexFixed Width PartitioningNo Partitioning

Spectral
RM

Spectral
MI

Bloom Filter
Interface

Basic

Core

I Modular: cleanly layered
I Fast: static polymorphism (CRTP)
I Safe: fail early at compile time (type-traits, SFINAE)
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Build-Your-Own Bloom Filter with libBf
1. Define a core type

typedef core<
fixed_width<uint8_t, std::allocator<uint8_t>

, double_hashing<default_hasher, 42, 4711>
, no_partitioning

> my_core;

2. Define a Bloom filter type
typedef basic<my_core> my_bloom_filter;

3. Instantiate with a core
my_bloom_filter bf({ 1 << 10, 5, 4 });

4. Use
bf.add("foo")
bf.add("foo")
bf.add(’z’)
bf.add(3.14159)
std::cout << bf.count("foo") << std::endl; // returns 2
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The Bliss of C++11
I Type inference:

auto i = std::unordered_map<int, int>().begin();
decltype(i) j;

I Lambda functions:
[&](int i) -> bool { return i % 42; }

I Rvalue references:
template <typename Core>
bloom_filter(Core&& core) { ... }
bloom_filter bf({ 128, 5, 4 });

I Range-based for loops:
for (auto i : { 2, 4, 8, 16 })

f(i * 2);

I Type traits for metaprogramming
I Beefed-up STL: RNGs, distributions, hashing,. . .
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Evaluation

I Analyze correctness
→ Recurring minimum (RM) seems to have a bug
I How does this garden variety of Bloom filters perform?
→ Compare performance metrics (FP, FN, TP, TN) across BFs
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Spectral Bloom Filter RM Bug

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

1 1x 0

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.
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Spectral Bloom Filter RM Bug

0 10y 1 0 0
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Primary Bloom Filter Secondary Bloom Filter
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Bug
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Spectral Bloom Filter RM Bug

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2x 1 3 0
2 1y 1
1 1x 0

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.
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Spectral Bloom Filter RM Bug

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.
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Spectral Bloom Filter RM Bug
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Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.
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Spectral Bloom Filter RM Bug

1 12y 22 2
12 12 1 1

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2y 45 1
1 4 14x

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.
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Spectral Bloom Filter RM Bug

23 13x 2 1
1 12y 22 2
12 12 1 1

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

62x 5 1
2y 45 1
1 4 14x

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.
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Spectral Bloom Filter RM Bug
I Implications: Claim 1 does not hold for spectral RM.
→ FNs can occur
I “Optimization:” keep track of items in 2nd BF via 3rd BF
I Equivalent to always looking in both BFs
I Not really an optimization

Experimentation
I Is it still possible to look up the 2nd BF only for unique minimum?
I Let mi

x be the count estimate of x in BF i
I We played with functions g(m1

x,m
2
x) to reduce FNs

I Our finding: significantly reduced FN rates for

g(x, y) =
x+ y

2

→ Performance: better FN rates, lookup only 20% of the time
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Performance Analysis

I Compare FP (blue), FN (red), TP (black), TN (green) rates as a
function of space

I Very preliminary analysis
I Synthetic data from two discrete distributions

I Unif {0, 1000} (left panel)
I Zeta (1.5) (right panel)

I Fixed parameters: w = 17, n = 1000

26 / 35



Metrics for k = 2 and w = 17
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Metrics for k = 3 and w = 17
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Metrics for k = 4 and w = 17
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Metrics for k = 5 and w = 17
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Summary

I Studied a variety of different Bloom filter types
I Implemented and published libBf, a C++11 Bloom filter library
I Started to study the trade-offs in the parameter space
I Next steps: more rigorous performance measurements needed
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Bloom Filter Halving

∨
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