Inspiration

- **Our background**: network security, databases
 - We deal with massive data sets
- Lectures about **streaming algorithms** sparked our interest
 - Approximate set membership
 - Frequency estimation
- **This project**: explore and compare **Bloom Filter** variants
Bloom filters – What the Fl*wer?

Usage
When dealing with a set or multiset and space is an issue an, a Bloom filter (BF) may be tractable alternative.

- Synopsis data structure: substantially smaller than base data
- Price: only approximate answers
 - False Positives (FPs)
 - False Negatives (FNs)
- Applications
 - Dictionaries
 - Database joins
 - Networking (web caches, IP traceback, multicast, P2P overlays)
 - Blacklists (Google SafeBrowsing)
Outline

Bloom Filter
 Basic
 Counting
 Spectral
 Bitwise
 Stable
 A^2

Implementation

Evaluation
Outline

Bloom Filter
 Basic
 Counting
 Spectral
 Bitwise
 Stable
 A^2

Implementation

Evaluation
Terminology

- **Universe** \(U \)
- \(N \) distinct items
- \(k \) independent hash functions \(h_1, \ldots, h_k \)
- **Vector** \(V \) of \(m \) cells, i.e., \(m = |V| \)
- **Set**
 - \(S = \{x_1, \ldots, x_n\} \) where \(x_i \in U \) and \(|S| = n \)
- **Multiset / Stream**
 - \(S = \{x_1, \ldots, x_n\} \) where \(x_i \in U \) and \(|S| = n \)
 - \(C_x = \{c_{h_1}(x), \ldots, c_{h_k}(x)\} \) counters of \(x \)
 - \(f_x = \) multiplicity (frequency) of \(x \in S \)
- **Bloom filter estimate** denoted by “hat”
 - \(\hat{S}, \hat{S}, \hat{f}_x, \ldots \)

- **FP probability** \(\phi_P = \mathbb{P}\left[x \in \hat{S} \mid x \notin S \right] \)
- **FN probability** \(\phi_N = \mathbb{P}\left[x \notin \hat{S} \mid x \in S \right] \)
Basic Bloom Filter

- By Burton Bloom in 1970 [Blo70]
- V has m single-bit cells
- k independent hash functions
- FPs but no FNs

add(x)

$$V[h_i(x)] = 1 \text{ for } i \in [k]$$

query(x)

return $V[h_1(x)] == 1 \land \cdots \land V[h_k(x)] == 1$
Bloom Error E_B

- **Bloom error** E_B: falsely report $x \in \hat{S}$ although $x \notin S$
- Start with empty V, set k bits to 1. For a fixed cell i,

\[
P[V[i] = 0] = \left(1 - \frac{1}{m}\right)^k
\]

- After n insertions,

\[
P[V[i] = 1] = 1 - \left(1 - \frac{1}{m}\right)^{kn}
\]

- Testing for membership involves hashing an item k times

\[
P[E_B] = \phi_P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k
\]
Parameterization

- Fix m and n. Then,

$$k^* = \arg\min_k \mathbb{P}[E_B] = \left\lfloor \frac{m}{n} \ln 2 \right\rfloor$$

- For k^*, $\mathbb{P}[E_B] = (0.619)^{m/n}$

- For a fixed $\phi_P = \mathbb{P}[E_B]$,

$$m = \left\lfloor -\frac{n \ln \phi_P}{(\ln 2)^2} \right\rfloor$$

$$\kappa = \left\lfloor -\frac{m}{\ln \phi_P} (\ln 2)^2 \right\rfloor$$

Definition

The capacity κ of a Bloom filter is the maximum number of items it can hold until a given ϕ_P can no longer be guaranteed. A Bloom filter is full when then number of added items exceeds κ.
Counting Bloom Filters [FCAB98]

Supporting Multisets

- \(V \) has \(m \) cells of width \(w \)
- Counters \(c \in \{0, \ldots, 2^w - 1\} \)
- Incrementing introduces FPs
- Decrementing introduces FNs
- Counter overflows

\[
\text{add}(x) \quad ++V[h_i(x)] \quad \forall i \in [k]
\]

\[
\text{remove}(x) \quad --V[h_i(x)] \quad \forall i \in [k]
\]

\[
\text{count}(x) \quad \min_{i \in [k]} \{V[h_i(x)]\}
\]
Spectral Algorithms [CM03]

Minimum Selection (MS)
- Nothing fancy, we use it already for counting Bloom filters
 \[
 m_x = \min_{i \in [k]} \{ V[h_i(x)] \}
 \]
- MS estimator: \(\hat{f}_x = m_x \)
- **Claim 1**: \(f_x \leq m_x \) and \(\mathbb{P}[f_x \neq m_x] = E_B \)

Minimum Increase (MI)
- When adding an item \(x \), only increase the cell(s) with \(m_x \)
- **Claim 2**: \(E^{MI}_B = O(E_B) \)
- **Claim 3**: If \(x \) drawn uniformly from \(U \), then
 \[
 E^{MI}_B = \frac{E_B}{k}
 \]
Recurring Minimum (RM)

▶ Observation:
 ▶ Items with high E_B less likely to have recurring minima
 ▶ $\sim 20\%$ of the items have a unique minimum
 ▶ Keep track of items with unique minimum in secondary Bloom filter V_2

<table>
<thead>
<tr>
<th>add(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$++V[h_i(x)] \ \forall i \in [k]$</td>
</tr>
<tr>
<td>$m_x \leftarrow \min_{i \in k} V[h_i(x)] \ \forall i \in [k]$</td>
</tr>
<tr>
<td>if x has RM in V then</td>
</tr>
<tr>
<td>return</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>if $x \in V_2$ then</td>
</tr>
<tr>
<td>$++V_2[h_i^2(x)] \ \forall i \in [k_2]$</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>$V_2[h_i^2(x)] + = m_x \ \forall i \in [k_2]$</td>
</tr>
<tr>
<td>end if</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>count(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_x \leftarrow \min_{i \in k} V[h_i(x)] \ \forall i \in [k]$</td>
</tr>
<tr>
<td>if x has RM in V then</td>
</tr>
<tr>
<td>return m_x</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>if $x \in V_2$ then</td>
</tr>
<tr>
<td>$m'x \leftarrow \min{i \in k_2} V[h_i^2(x)] \ \forall i \in [k_2]$</td>
</tr>
<tr>
<td>return m'_x</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>return m_x</td>
</tr>
<tr>
<td>end if</td>
</tr>
</tbody>
</table>
Bitwise Bloom Filter [LO07]

- l basic Bloom filters
- V_i has m_i cells of width w_i
- Counters $c \in \{0, \infty\}$
- $\{h^i_j : j \in [k_i] \land i \in [l]\}$
- Both FPs and FNs
- Overflows only across items

add(x)

```
i \leftarrow 0
while x \in V_i \land i < l do
    V_i[h^i_j(x)] = 0 \ \forall j \in [k_i]
end while
++V_i[h^i_j(x)] \ \forall j \in [k_i]
```

count(x)

```
c \leftarrow 0
for i \leftarrow 0 to l - 1 do
    if x \in V_i then
        c \leftarrow c + 2^l
    end if
end for
return c
```
Ageing

- Streaming data: Bloom filters fills up over time
 - High number of FPs
 - Can I haz sliding window?

→ Too expensive to keep old data around
 - Want: Bloom Filter behaving like a FIFO
Stable Bloom Filter [DR06]

- Basic Bloom filter with m fixed-width cells of size w

- Counters reflect age
 1. Decrement d cells before each insertion
 2. Adding an item x sets its counter to $2^w - 1$

```add(x)
1: for $i \leftarrow 1$ to $d$ do
2: Draw $\alpha \sim \text{Unif}\{0, m - 1\}$
3: $\lnot\mathsf{V}[\alpha]$
4: end for
5: $\mathsf{V}[h_i(x)] = 2^w - 1 \quad \forall i \in [k]$
```

- **Stable** property: fraction of zeros will become fixed

- Bloom error when having reached the stable point

$$\phi_P = \left(1 - \left(\frac{1}{1 + \frac{1}{d(1/k - 1/m)}}\right)\right)$$

- Tweak parameters w, k, m, d to achieve the desired ϕ_P
A^2 Buffering [Yoo10]

- Two bit vectors V_1 and V_2 where $|V_1| = |V_2| = \frac{m}{2}$
- Swap both vectors when V_1 becomes full (reached κ_a)
- Bloom error:
 \[\phi_{P_a} = 1 - \sqrt{1 - \phi_P} \]
- Optimal k_a and κ_a:
 \[k_a^* = \left\lfloor -\log_2 \left(1 - \sqrt{1 - \phi_P} \right) \right\rfloor \]
 \[\kappa_a^* = \left\lfloor \frac{m}{2k_a^* \ln 2} \right\rfloor \]

add(x)

1. if $x \in V_1$ then
2. return
3. end if
4. $V_1 \leftarrow V_1 \cup \{x\}$
5. if V_1 has not reached κ_a then
6. return
7. end if
8. Flush V_2
9. Swap V_1 and V_2
10. $V_1 \leftarrow V_1 \cup \{x\}$

query(x)

return $x \in V_1 \lor x \in V_2$
Outline

Bloom Filter
 Basic
 Counting
 Spectral
 Bitwise
 Stable
 A^2

Implementation

Evaluation
libBf: Bloom Filter Library in C++11

Implementation of 6 Bloom filters

1. A²
2. Basic (+ counting)
3. Bitwise
4. Spectral (MI)
5. Spectral (RM)
6. Stable

- Policy-based design
 - **Hash**: computes hash values
 - **Store**: provides $O(1)$ random-access counter storage
 - **Partition**: maps hash values to cells

- Easy to use
 - Header-only
 - BSD-style license
 - Interface fully documented (Doxygen)
 - Available at https://github.com/mavam/libBf
libBf: Policy-Based Architecture

- Modular: cleanly layered
- Fast: static polymorphism (CRTP)
- Safe: fail early at compile time (type-traitS, SFINAE)
Build-Your-Own Bloom Filter with libBf

1. Define a core type

   ```cpp
typedef core<
   fixed_width<uint8_t, std::allocator<uint8_t>,
   double_hashing<default_hasher, 42, 4711>,
   no_partitioning
   > my_core;
   ```

2. Define a Bloom filter type

   ```cpp
typedef basic<my_core> my_bloom_filter;
   ```

3. Instantiate with a core

   ```cpp
my_bloom_filter bf({ 1 << 10, 5, 4 });
   ```

4. Use

   ```cpp
bf.add("foo")
bf.add("foo")
bf.add('z')
bf.add(3.14159)
std::cout << bf.count("foo") << std::endl; // returns 2
```
The Bliss of C++11

- **Type inference:**
  ```cpp
class auto i = std::unordered_map<int, int>().begin();
decltype(i) j;
```

- **Lambda functions:**
  ```cpp
  [&](int i) -> bool { return i % 42; }
  ```

- **Rvalue references:**
  ```cpp
template <typename Core>
bloom_filter(Core&& core) { ... }.
bloom_filter bf({ 128, 5, 4 });
```

- **Range-based for loops:**
  ```cpp
  for (auto i : { 2, 4, 8, 16 })
     f(i * 2);
  ```

- **Type traits for metaprogramming**
- **Beefed-up STL:** RNGs, distributions, hashing, ...
Outline

Bloom Filter
 Basic
 Counting
 Spectral
 Bitwise
 Stable

Implementation

Evaluation
Evaluation

- Analyze correctness
 - Recurring minimum (RM) seems to have a bug
 - How does this garden variety of Bloom filters perform?
 - Compare performance metrics (FP, FN, TP, TN) across BFs
Bug item was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Bug Item was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Spectral Bloom Filter RM Bug

Bug item was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Spectral Bloom Filter RM Bug

Primary Bloom Filter

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Secondary Bloom Filter

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Bug Item was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Bug Item was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Bug Item was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Spectral Bloom Filter RM Bug

Primary Bloom Filter

Secondary Bloom Filter

Bug

Item x was inserted 4 times, but spectral RM as in the paper reports 3, which is not an upper bound on the actual value.
Spectral Bloom Filter RM Bug

- Implications: Claim 1 does not hold for spectral RM.
 - FNs can occur
 - “Optimization:” keep track of items in 2nd BF via 3rd BF
 - Equivalent to always looking in both BFs
 - Not really an optimization

Experimentation

- Is it still possible to look up the 2nd BF only for unique minimum?
- Let m_x^i be the count estimate of x in BF i
- We played with functions $g(m_x^1, m_x^2)$ to reduce FNs
- Our finding: significantly reduced FN rates for

\[g(x, y) = \frac{x + y}{2} \]

- Performance: better FN rates, lookup only 20% of the time
Performance Analysis

- Compare FP (blue), FN (red), TP (black), TN (green) rates as a function of space
- Very preliminary analysis
- Synthetic data from two discrete distributions
 - Unif \{0, 1000\} (left panel)
 - Zeta (1.5) (right panel)
- Fixed parameters: \(w = 17, n = 1000 \)
Metrics for $k = 2$ and $w = 17$
Metrics for $k = 3$ and $w = 17$
Metrics for $k = 4$ and $w = 17$
Metrics for $k = 5$ and $w = 17$
Summary

- Studied a variety of different Bloom filter types
- Implemented and published `libBf`, a C++11 Bloom filter library
- Started to study the trade-offs in the parameter space
- Next steps: more rigorous performance measurements needed
Burton H. Bloom.
Space/Time Trade-offs in Hash Coding with Allowable Errors.

Saar Cohen and Yossi Matias.
Spectral Bloom Filters.

Fan Deng and Davood Rafiei.
Approximately Detecting Duplicates for Streaming Data using Stable Bloom Filters.
Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder.
In Proceedings of the ACM SIGCOMM '98 conference on Applications,
technologies, architectures, and protocols for computer communication,

Ashwin Lall and Mitsunori Ogihara.
The Bitwise Bloom Filter.

MyungKeun Yoon.
Aging bloom filter with two active buffers for dynamic sets.
Backup Slides
Bloom Filter Halving

\[\frac{m}{2} \text{ bits} \rightarrow \frac{m}{2} \text{ bits} \]

(1) \begin{align*}
&\ \ \ \ \ \ \ \ \ 1 \ 1 \ 1 \ 1 \ 1 \ \ \ \ \ \ 1 \ \ 1 \\
\end{align*}

(2) \begin{align*}
&\ \ \ \ \ \ \ \ \ 1 \ 1 \ 1 \ \ \ \ \ \ \ \ 1 \
\end{align*}

(3) \begin{align*}
&1 \ 1 \ 1 \ \ \ 1 \ 1 \\
\end{align*}

(4) \begin{align*}
\log m \text{ bits} \\
\end{align*}

\[h_i(x) \in \left\lfloor \frac{m}{2} \right\rfloor \]