
Bloom Filter Redux

Matthias Vallentin Gene Pang

CS 270
Combinatorial Algorithms

and Data Structures

UC Berkeley, Spring 2011

Inspiration

I Our background: network security, databases
→ We deal with massive data sets

I Lectures about streaming algorithms sparked our interest
I Approximate set membership
I Frequency estimation

I This project: explore and compare Bloom Filter variants

2 / 35

Bloom filters – What the Fl*wer?

Usage
When dealing with a set or multiset and space is an issue an, a Bloom
filter (BF) may be tractable alternative.

I Synopsis data structure: substantially smaller than base data
I Price: only approximate answers

I False Positives (FPs)
I False Negatives (FNs)

I Applications
I Dictionaries
I Database joins
I Networking (web caches, IP traceback, multicast, P2P overlays)
I Blacklists (Google SafeBrowsing)

3 / 35

Outline

Bloom Filter
Basic
Counting
Spectral
Bitwise
Stable
A2

Implementation

Evaluation

4 / 35

Outline

Bloom Filter
Basic
Counting
Spectral
Bitwise
Stable
A2

Implementation

Evaluation

5 / 35

Terminology
I Universe U
I N distinct items
I k independent hash functions h1, . . . , hk
I Vector V of m cells, i.e., m = |V |
I Set

I S = {x1, . . . , xn} where xi ∈ U and |S| = n

I Multiset / Stream
I S = {x1, . . . , xn} where xi ∈ U and |S| = n
I Cx =

{
ch1(x), . . . , chk(x)

}
counters of x

I fx = multiplicity (frequency) of x ∈ S
I Bloom filter estimate denoted by “hat”

I Ŝ, Ŝ, f̂x, . . .

I FP probability φP = P
[
x ∈ Ŝ |x /∈ S

]

I FN probability φN = P
[
x /∈ Ŝ |x ∈ S

]

6 / 35

Basic Bloom Filter

I By Burton Bloom in 1970 [Blo70]
I V has m single-bit cells
I k independent hash functions
I FPs but no FNs

add(x)
V [hi(x)] = 1 for i ∈ [k]

query(x)
return V [h1(x)] == 1∧ · · · ∧ V [hk(x)] == 1

7 / 35

Bloom Error EB

I Bloom error EB: falsely report x ∈ Ŝ although x /∈ S
I Start with empty V , set k bits to 1. For a fixed cell i,

P [V [i] = 0] =

(
1− 1

m

)k

I After n insertions,

P [[V [i] = 1] = 1−
(
1− 1

m

)kn

I Testing for membership involves hashing an item k times

P [EB] = φP =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k

8 / 35

Parameterization
I Fix m and n. Then,

k∗ = argmin
k

P [EB] =
⌊m
n

ln 2
⌋

I For k∗, P [EB] = (0.619)m/n

I For a fixed φP = P [EB],

m =

⌊
−n lnφP

(ln 2)2

⌋

κ =

⌊
− m

lnφP
(ln 2)2

⌋
0 2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

k
E

B

●

●

●

●

●

k = 6
k = 7
k = 8
k = 9
k = 10

Definition
The capacity κ of a Bloom filter is the maximum number of items it can
hold until a given φP can no longer be guaranteed. A Bloom filter is full
when then number of added items exceeds κ.

9 / 35

Counting Bloom Filters [FCAB98]

Supporting Multisets
I V has m cells of width w
I Counters c ∈ {0, . . . , 2w − 1}
I Incrementing introduces FPs
I Decrementing introduces FNs
I Counter overflows

add(x)
++V [hi(x)] ∀i ∈ [k]

remove(x)
−−V [hi(x)] ∀i ∈ [k]

count(x)
min
i∈[k]

{
V [hi(x)]

}

10 / 35

Spectral Algorithms [CM03]

Minimum Selection (MS)
I Nothing fancy, we use it already for counting Bloom filters

mx = min
i∈[k]

{
V [hi(x)]

}

I MS estimator: f̂x = mx

I Claim 1: fx ≤ mx and P [fx 6= mx] = EB

Minimum Increase (MI)
I When adding an item x, only increase the cell(s) with mx

I Claim 2: EMI
B = O(EB)

I Claim 3: If x drawn uniformly from U , then

EMI
B =

EB

k

11 / 35

Spectral Algorithms (cont’d)
Recurring Minimum (RM)

I Observation:
I Items with high EB less likely to have recurring minima
I ∼20% of the items have a unique minimum

I Keep track of items with unique minimum in secondary Bloom filter V2

add(x)
++V [hi(x)] ∀i ∈ [k]
mx ← mini∈k V [hi(x)] ∀i ∈ [k]
if x has RM in V then

return
end if
if x ∈ V2 then

++V2[h
2
i (x)] ∀i ∈ [k2]

else
V2[h

2
i (x)]+ = mx ∀i ∈ [k2]

end if

count(x)
mx ← mini∈k V [hi(x)] ∀i ∈ [k]
if x has RM in V then

return mx

end if
if x ∈ V2 then
m′

x ← mini∈k2
V [h2i (x)] ∀i ∈ [k2]

return m′
x

else
return mx

end if
12 / 35

Bitwise Bloom Filter [LO07]
I l basic Bloom filters
I Vi has mi cells of width wi

I Counters c ∈ {0,∞)

I
{
hij : j ∈ [ki] ∧ i ∈ [l]

}

I Both FPs and FNs
I Overflows only across items

hl
khl

1 h1
1 h1

kh2
1 h2

k

add(x)
i← 0
while x ∈ Vi ∧ i < l do
Vi[h

i
j(x)] = 0 ∀j ∈ [ki]

end while
++Vi[h

i
j(x)] ∀j ∈ [ki]

count(x)
c← 0
for i← 0 to l − 1 do
if x ∈ Vi then
c← c+ 2l

end if
end for
return c

13 / 35

Ageing

I Streaming data: Bloom filters fills up over time
→ High number of FPs
I Can I haz sliding window?

x7
x0

→ Too expensive to keep old data around
I Want: Bloom Filter behaving like a FIFO

14 / 35

Stable Bloom Filter [DR06]
I Basic Bloom filter with m fixed-width cells of size w
I Counters reflect age

1. Decrement d cells before each insertion
2. Adding an item x sets its counter to 2w − 1

add(x)
1: for i← 1 to d do
2: Draw α ∼ Unif {0,m− 1}
3: −−V [α]
4: end for
5: V [hi(x)] = 2w − 1 ∀i ∈ [k]

I Stable property: fraction of zeros will become fixed
I Bloom error when having reached the stable point

φP =

(
1−

(
1

1 + 1
d(1/k−1/m)

))

I Tweak parameters w, k,m, d to achieve the desired φP
15 / 35

A2 Buffering [Yoo10]

I Two bit vectors V1 and V2 where
|V1| = |V2| = m

2

I Swap both vectors when V1
becomes full (reached κa)

I Bloom error:

φP a = 1−
√
1− φP

I Optimal ka and κa:

k∗a =
⌊
− log2

(
1−

√
1− φP

)⌋

κ∗a =

⌊
m

2k∗a
ln 2

⌋

add(x)
1: if x ∈ V1 then
2: return
3: end if
4: V1 ← V1 ∪ {x}
5: if V1 has not reached κa then
6: return
7: end if
8: Flush V2
9: Swap V1 and V2

10: V1 ← V1 ∪ {x}

query(x)
return x ∈ V1 ∨ x ∈ V2

16 / 35

Outline

Bloom Filter
Basic
Counting
Spectral
Bitwise
Stable
A2

Implementation

Evaluation

17 / 35

libBf: Bloom Filter Library in C++11

Implementation of 6 Bloom filters

1. A2

2. Basic (+ counting)
3. Bitwise

4. Spectral (MI)
5. Spectral (RM)
6. Stable

I Policy-based design
I Hash: computes hash values
I Store: provides O(1) random-access counter storage
I Partition: maps hash values to cells

I Easy to use
I Header-only
I BSD-style license
I Interface fully documented (Doxygen)
I Available at https://github.com/mavam/libBf

18 / 35

https://github.com/mavam/libBf

libBf: Policy-Based Architecture

Hash

Stable

Store

Bitwise A2 Timing

Partition

Default Hashing (Extended)
Double Hashing

String-Array
IndexFixed Width PartitioningNo Partitioning

Spectral
RM

Spectral
MI

Bloom Filter
Interface

Basic

Core

I Modular: cleanly layered
I Fast: static polymorphism (CRTP)
I Safe: fail early at compile time (type-traits, SFINAE)

19 / 35

Build-Your-Own Bloom Filter with libBf
1. Define a core type

typedef core<
fixed_width<uint8_t, std::allocator<uint8_t>

, double_hashing<default_hasher, 42, 4711>
, no_partitioning

> my_core;

2. Define a Bloom filter type
typedef basic<my_core> my_bloom_filter;

3. Instantiate with a core
my_bloom_filter bf({ 1 << 10, 5, 4 });

4. Use
bf.add("foo")
bf.add("foo")
bf.add(’z’)
bf.add(3.14159)
std::cout << bf.count("foo") << std::endl; // returns 2

20 / 35

The Bliss of C++11
I Type inference:

auto i = std::unordered_map<int, int>().begin();
decltype(i) j;

I Lambda functions:
[&](int i) -> bool { return i % 42; }

I Rvalue references:
template <typename Core>
bloom_filter(Core&& core) { ... }
bloom_filter bf({ 128, 5, 4 });

I Range-based for loops:
for (auto i : { 2, 4, 8, 16 })

f(i * 2);

I Type traits for metaprogramming
I Beefed-up STL: RNGs, distributions, hashing,. . .

21 / 35

Outline

Bloom Filter
Basic
Counting
Spectral
Bitwise
Stable
A2

Implementation

Evaluation

22 / 35

Evaluation

I Analyze correctness
→ Recurring minimum (RM) seems to have a bug
I How does this garden variety of Bloom filters perform?
→ Compare performance metrics (FP, FN, TP, TN) across BFs

23 / 35

Spectral Bloom Filter RM Bug

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

1 1x 0

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug

0 10y 1 0 0
0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2 1y 1
1 1x 0

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2x 1 3 0
2 1y 1
1 1x 0

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug

12 12 1 1

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

1 4 14x

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug

1 12y 22 2
12 12 1 1

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

2y 45 1
1 4 14x

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug

23 13x 2 1
1 12y 22 2
12 12 1 1

2 1x 2 1 00
0 10y 1 0 0

0 0 00 0 0

Primary Bloom Filter Secondary Bloom Filter

62x 5 1
2y 45 1
1 4 14x

2x 1 3 0
2 1y 1
1 1x 0

1 3 13z z 12 12 1 1

Bug
Item x was inserted 4 times, but spectral RM as in the paper reports 3,
which is not an upper bound on the actual value.

24 / 35

Spectral Bloom Filter RM Bug
I Implications: Claim 1 does not hold for spectral RM.
→ FNs can occur
I “Optimization:” keep track of items in 2nd BF via 3rd BF
I Equivalent to always looking in both BFs
I Not really an optimization

Experimentation
I Is it still possible to look up the 2nd BF only for unique minimum?
I Let mi

x be the count estimate of x in BF i
I We played with functions g(m1

x,m
2
x) to reduce FNs

I Our finding: significantly reduced FN rates for

g(x, y) =
x+ y

2

→ Performance: better FN rates, lookup only 20% of the time

25 / 35

Performance Analysis

I Compare FP (blue), FN (red), TP (black), TN (green) rates as a
function of space

I Very preliminary analysis
I Synthetic data from two discrete distributions

I Unif {0, 1000} (left panel)
I Zeta (1.5) (right panel)

I Fixed parameters: w = 17, n = 1000

26 / 35

Metrics for k = 2 and w = 17

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s ●

●

●
●

●

●

●

●
●

●

● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

27 / 35

Metrics for k = 3 and w = 17

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●
●

●

●

●

●
●

●
● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

28 / 35

Metrics for k = 4 and w = 17

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

29 / 35

Metrics for k = 5 and w = 17

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells

M
et

ric
s

●

●

●
●

●

●

●

●
●

●
● ● ● ● ●● ● ● ● ●

● basic
bitwise
spectral−mi
spectral−rm

30 / 35

Summary

I Studied a variety of different Bloom filter types
I Implemented and published libBf, a C++11 Bloom filter library
I Started to study the trade-offs in the parameter space
I Next steps: more rigorous performance measurements needed

31 / 35

References I

Burton H. Bloom.
Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM, 13:422–426, July 1970.

Saar Cohen and Yossi Matias.
Spectral Bloom Filters.
In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, SIGMOD ’03, pages 241–252, New York, NY,
USA, 2003. ACM.

Fan Deng and Davood Rafiei.
Approximately Detecting Duplicates for Streaming Data using Stable
Bloom Filters.
In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, SIGMOD ’06, pages 25–36, New York, NY,
USA, 2006. ACM.

32 / 35

References II

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder.
Summary Cache: A Scalable Wide-area Web Cache Sharing Protocol.
In Proceedings of the ACM SIGCOMM ’98 conference on Applications,
technologies, architectures, and protocols for computer communication,
SIGCOMM ’98, pages 254–265, New York, NY, USA, 1998. ACM.

Ashwin Lall and Mitsunori Ogihara.
The Bitwise Bloom Filter.
Technical Report TR-2007-927, University of Rochester, November
2007.

MyungKeun Yoon.
Aging bloom filter with two active buffers for dynamic sets.
IEEE Trans. Knowl. Data Eng., 22(1):134–138, 2010.

33 / 35

Backup Slides

34 / 35

Bloom Filter Halving

∨

(1)

(2)

(3)

m

2
bits

m

2
bits

log m bits

(4) hi(x) ∈
�m

2

�

log(m)− 1 bits

35 / 35

	Bloom Filter
	Basic
	Counting
	Spectral
	Bitwise
	Stable
	A2

	Implementation
	Evaluation

