Bloom Filter Redux

Matthias Vallentin Gene Pang

CS 270
Combinatorial Algorithms and Data Structures

UC Berkeley, Spring 2011

Inspiration

- Our background: network security, databases
\rightarrow We deal with massive data sets
- Lectures about streaming algorithms sparked our interest
- Approximate set membership
- Frequency estimation
- This project: explore and compare Bloom Filter variants

Bloom filters - What the FI*wer?

Usage

When dealing with a set or multiset and space is an issue an, a Bloom filter (BF) may be tractable alternative.

- Synopsis data structure: substantially smaller than base data
- Price: only approximate answers
- False Positives (FPs)
- False Negatives (FNs)
- Applications
- Dictionaries
- Database joins
- Networking (web caches, IP traceback, multicast, P2P overlays)
- Blacklists (Google SafeBrowsing)

Outline

Bloom Filter Basic Counting Spectral
Bitwise
Stable A^{2}

Implementation

Evaluation

Outline

Bloom Filter
Basic
Counting
Spectral
Bitwise
Stable
A^{2}

Implementation

Terminology

- Universe U
- N distinct items
- k independent hash functions h_{1}, \ldots, h_{k}
- Vector V of m cells, i.e., $m=|V|$
- Set
- $S=\left\{x_{1}, \ldots, x_{n}\right\}$ where $x_{i} \in U$ and $|S|=n$
- Multiset / Stream
- $\mathcal{S}=\left\{x_{1}, \ldots, x_{n}\right\}$ where $x_{i} \in U$ and $|\mathcal{S}|=n$
- $C_{x}=\left\{c_{h_{1}(x)}, \ldots, c_{h_{k}(x)}\right\}$ counters of x
- $f_{x}=$ multiplicity (frequency) of $x \in \mathcal{S}$
- Bloom filter estimate denoted by "hat"
- $\widehat{S}, \widehat{\mathcal{S}}, \widehat{f}_{x}, \ldots$
- FP probability $\phi_{P}=\mathbb{P}[x \in \widehat{S} \mid x \notin S]$
- FN probability $\phi_{N}=\mathbb{P}[x \notin \widehat{S} \mid x \in S]$

Basic Bloom Filter

- By Burton Bloom in 1970 [Blo70]
- V has m single-bit cells
- k independent hash functions
- FPs but no FNs

$$
\begin{aligned}
& \operatorname{add}(\mathrm{x}) \\
& \qquad V\left[h_{i}(x)\right]=1 \text { for } i \in[k]
\end{aligned}
$$

```
query(x)
return }V[\mp@subsup{h}{1}{}(x)]==1\wedge\cdots\wedgeV[\mp@subsup{h}{k}{}(x)]==
```


Bloom Error E_{B}

- Bloom error E_{B} : falsely report $x \in \widehat{S}$ although $x \notin S$
- Start with empty V, set k bits to 1 . For a fixed cell i,

$$
\mathbb{P}[V[i]=0]=\left(1-\frac{1}{m}\right)^{k}
$$

- After n insertions,

$$
\mathbb{P}\left[[V[i]=1]=1-\left(1-\frac{1}{m}\right)^{k n}\right.
$$

- Testing for membership involves hashing an item k times

$$
\mathbb{P}\left[E_{B}\right]=\phi_{P}=\left(1-\left(1-\frac{1}{m}\right)^{k n}\right)^{k} \approx\left(1-e^{-k n / m}\right)^{k}
$$

Parameterization

- Fix m and n. Then,

$$
k^{*}=\underset{k}{\operatorname{argmin}} \mathbb{P}\left[E_{B}\right]=\left\lfloor\frac{m}{n} \ln 2\right\rfloor
$$

- For $k^{*}, \mathbb{P}\left[E_{B}\right]=(0.619)^{m / n}$
- For a fixed $\phi_{P}=\mathbb{P}\left[E_{B}\right]$,

$$
\begin{gathered}
m=\left\lfloor-\frac{n \ln \phi_{P}}{(\ln 2)^{2}}\right\rfloor \\
\kappa=\left\lfloor-\frac{m}{\ln \phi_{P}}(\ln 2)^{2}\right\rfloor
\end{gathered}
$$

Definition

The capacity κ of a Bloom filter is the maximum number of items it can hold until a given ϕ_{P} can no longer be guaranteed. A Bloom filter is full when then number of added items exceeds κ.

Counting Bloom Filters [FCAB98]

Supporting Multisets

- V has m cells of width w
- Counters $c \in\left\{0, \ldots, 2^{w}-1\right\}$
- Incrementing introduces FPs
- Decrementing introduces FNs
- Counter overflows

add (x)

$$
++V\left[h_{i}(x)\right] \quad \forall i \in[k]
$$


```
remove (x)
    --V[hi(x)] \foralli\in[k]
```

count (x)

$$
\min _{i \in[k]}\left\{V\left[h_{i}(x)\right]\right\}
$$

Spectral Algorithms [CM03]

Minimum Selection (MS)

- Nothing fancy, we use it already for counting Bloom filters

$$
m_{x}=\min _{i \in[k]}\left\{V\left[h_{i}(x)\right]\right\}
$$

- MS estimator: $\widehat{f}_{x}=m_{x}$
- Claim 1: $f_{x} \leq m_{x}$ and $\mathbb{P}\left[f_{x} \neq m_{x}\right]=E_{B}$

Minimum Increase (MI)

- When adding an item x, only increase the cell(s) with m_{x}
- Claim 2: $E_{B}^{M I}=O\left(E_{B}\right)$
- Claim 3: If x drawn uniformly from U, then

$$
E_{B}^{M I}=\frac{E_{B}}{k}
$$

Spectral Algorithms (cont'd)

Recurring Minimum (RM)

- Observation:
- Items with high E_{B} less likely to have recurring minima
- $\sim 20 \%$ of the items have a unique minimum
- Keep track of items with unique minimum in secondary Bloom filter V_{2}

add (x)	count (x)
$++V\left[h_{i}(x)\right] \quad \forall i \in[k]$	$m_{x} \leftarrow \min _{i \in k} V\left[h_{i}(x)\right] \quad \forall i \in[k]$
$m_{x} \leftarrow \min _{i \in k} V\left[h_{i}(x)\right] \quad \forall i \in[k]$	if x has RM in V then
if x has RM in V then return	$\begin{aligned} & \text { return } m_{x} \\ & \text { end if } \end{aligned}$
end if	if $x \in V_{2}$ then
$\begin{aligned} & \text { if } x \in V_{2} \text { then } \\ & \quad++V_{2}\left[h_{i}^{2}(x)\right] \quad \forall i \in\left[k_{2}\right] \end{aligned}$	$\begin{aligned} & m_{x}^{\prime} \leftarrow \min _{i \in k_{2}} V\left[h_{i}^{2}(x)\right] \forall i \in\left[k_{2}\right] \\ & \text { return } m_{x}^{\prime} \end{aligned}$
else	else
$V_{2}\left[h_{i}^{2}(x)\right]+=m_{x} \quad \forall i \in\left[k_{2}\right]$ end if	$\begin{aligned} & \text { return } m_{x} \\ & \text { end if } \end{aligned}$

Bitwise Bloom Filter [LO07]

- l basic Bloom filters
- V_{i} has m_{i} cells of width w_{i}
- Counters $c \in\{0, \infty)$
- $\left\{h_{j}^{i}: j \in\left[k_{i}\right] \wedge i \in[l]\right\}$
- Both FPs and FNs
- Overflows only across items

$$
V_{i}\left[h_{j}^{i}(x)\right]=0 \quad \forall j \in\left[k_{i}\right]
$$

end while

$$
++V_{i}\left[h_{j}^{i}(x)\right] \quad \forall j \in\left[k_{i}\right]
$$

count (x)

$$
\begin{aligned}
& c \leftarrow 0 \\
& \text { for } i \leftarrow 0 \text { to } l-1 \text { do } \\
& \quad \text { if } x \in V_{i} \text { then } \\
& \quad c \leftarrow c+2^{l} \\
& \text { end if } \\
& \text { end for } \\
& \text { return } c
\end{aligned}
$$

Ageing

- Streaming data: Bloom filters fills up over time
\rightarrow High number of FPs
- Can I haz sliding window?

\rightarrow Too expensive to keep old data around
- Want: Bloom Filter behaving like a FIFO

Stable Bloom Filter [DR06]

- Basic Bloom filter with m fixed-width cells of size w
- Counters reflect age

1. Decrement d cells before each insertion
2. Adding an item x sets its counter to $2^{w}-1$

$$
\begin{aligned}
& \text { add }(\mathrm{x}) \\
& \text { 1: for } i \leftarrow 1 \text { to } d \text { do } \\
& \text { 2: } \quad \text { Draw } \alpha \sim \operatorname{Unif}\{0, m-1\} \\
& \text { 3: } \quad--V[\alpha] \\
& \text { 4: end for } \\
& \text { 5: } V\left[h_{i}(x)\right]=2^{w}-1 \quad \forall i \in[k]
\end{aligned}
$$

- Stable property: fraction of zeros will become fixed
- Bloom error when having reached the stable point

$$
\phi_{P}=\left(1-\left(\frac{1}{1+\frac{1}{d(1 / k-1 / m)}}\right)\right)
$$

- Tweak parameters w, k, m, d to achieve the desired ϕ_{P}

A^{2} Buffering [Yoo10]

- Two bit vectors V_{1} and V_{2} where $\operatorname{add}(\mathrm{x})$

$$
\left|V_{1}\right|=\left|V_{2}\right|=\frac{m}{2}
$$

- Swap both vectors when V_{1} becomes full (reached κ_{a})
- Bloom error:

$$
\phi_{P_{a}}=1-\sqrt{1-\phi_{P}}
$$

- Optimal k_{a} and κ_{a} :

$$
\begin{gathered}
k_{a}^{*}=\left\lfloor-\log _{2}\left(1-\sqrt{1-\phi_{P}}\right)\right\rfloor \\
\kappa_{a}^{*}=\left\lfloor\frac{m}{2 k_{a}^{*}} \ln 2\right\rfloor
\end{gathered}
$$

1: if $x \in V_{1}$ then
2: return
3: end if
4: $V_{1} \leftarrow V_{1} \cup\{x\}$
5: if V_{1} has not reached κ_{a} then
6: return
7: end if
8: Flush V_{2}
9: Swap V_{1} and V_{2}
10: $V_{1} \leftarrow V_{1} \cup\{x\}$
query (x)
return $x \in V_{1} \vee x \in V_{2}$

Outline

Bloom Filter Basic
 Counting Spectral
 Bitwise
 Stable
 A^{2}

Implementation

Evaluation

libBf: Bloom Filter Library in C++11

Implementation of 6 Bloom filters

\author{

1. A^{2}
 2. Basic (+ counting)
 3. Bitwise
}
2. Spectral (MI)
3. Spectral (RM)
4. Stable

- Policy-based design
- Hash: computes hash values
- Store: provides $O(1)$ random-access counter storage
- Partition: maps hash values to cells
- Easy to use
- Header-only
- BSD-style license
- Interface fully documented (Doxygen)
- Available at https://github.com/mavam/libBf

libBf: Policy-Based Architecture

- Modular: cleanly layered
- Fast: static polymorphism (CRTP)
- Safe: fail early at compile time (type-traits, SFINAE)

Build-Your-Own Bloom Filter with libBf

1. Define a core type
```
typedef core<
    fixed_width<uint8_t, std::allocator<uint8_t>
    , double_hashing<default_hasher, 42, 4711>
    , no_partitioning
> my_core;
```

2. Define a Bloom filter type
```
typedef basic<my_core> my_bloom_filter;
```

3. Instantiate with a core
```
my_bloom_filter bf({ 1 << 10, 5, 4 });
```

4. Use
```
bf.add("foo")
bf.add("foo")
bf.add('z')
bf.add(3.14159)
std::cout << bf.count("foo") << std::endl; // returns 2
```


The Bliss of $C++11$

- Type inference:

```
auto i = std::unordered_map<int, int>().begin();
decltype(i) j;
```

- Lambda functions:

$$
\text { [\&] (int i) -> bool \{ return i \% 42; \} }
$$

- Rvalue references:

```
template <typename Core>
bloom_filter(Core&& core) { ... }
bloom_filter bf({ 128, 5, 4 });
```

- Range-based for loops:

```
for (auto i : { 2, 4, 8, 16 })
    f(i * 2);
```

- Type traits for metaprogramming
- Beefed-up STL: RNGs, distributions, hashing,...

Outline

Bloom Filter Basic
 Counting Spectral
 Bitwise
 Stable
 A^{2}
 Implementation

Evaluation

Evaluation

- Analyze correctness
\rightarrow Recurring minimum (RM) seems to have a bug
- How does this garden variety of Bloom filters perform?
\rightarrow Compare performance metrics (FP, FN, TP, TN) across BFs

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x| 0 | 1 | 1 | |
| :--- | :--- | :--- | :--- |

Secondary Bloom Filter

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x	0	1	1	
	1	2	1	

Secondary Bloom Filter

y| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 0 |

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x	0	1	1	
y	1	2	1	
x	1	3	2	0

Secondary Bloom Filter

	0	0	0	0	0	0
	0	0	1	1	0	0
	2	2	1	1	0	0

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x	0	1	1	
y	1	2	1	
x	1	3	2	0
z	1	3	3	1

Secondary Bloom Filter

	0	0	0	0	0	0
y	0	0	1	1	0	0
x	2	2	1	1	0	0
z	2	2	1	1	1	1

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x	0	1	1	
y	1	2	1	
x	1	3	2	0
z	1	3	3	1
x	1	4	4	1

Secondary Bloom Filter

	0	0	0	0	0	0
	y	0	0	1	1	0
z						
x	2	2	1	1	0	0
z	2	2	1	1	1	1
	2	2	1	1	1	1

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x	x	0	1	1
y	1	2	1	
x	1	3	2	0
z	1	3	3	1
x	1	4	4	1
y	2	5	4	1

Secondary Bloom Filter

	0	0	0	0	0	0
y	0	0	1	1	0	0
x	2	2	1	1	0	0
z	2	2	1	1	1	1
	2	2	1	1	1	1
y	2	2	2	2	1	1

Spectral Bloom Filter RM Bug

Primary Bloom Filter

x	0	1	1	
y	1	2	1	
x	1	3	2	0
z	1	3	3	1
x	1	4	4	1
y	2	5	4	1
x	2	6	5	1

Secondary Bloom Filter

	0	0	0	0	0	0
y	0	0	1	1	0	0
x	2	2	1	1	0	0
z	2	2	1	1	1	1
	2	2	1	1	1	1
y	2	2	2	2	1	1
x	3	3	2	2	1	1

Bug

Item x was inserted 4 times, but spectral RM as in the paper reports 3 , which is not an upper bound on the actual value.

Spectral Bloom Filter RM Bug

- Implications: Claim 1 does not hold for spectral RM.
\rightarrow FNs can occur
- "Optimization:" keep track of items in $2^{\text {nd }} \mathrm{BF}$ via $3^{\text {rd }} \mathrm{BF}$
- Equivalent to always looking in both BFs
- Not really an optimization

Experimentation

- Is it still possible to look up the $2^{\text {nd }} \mathrm{BF}$ only for unique minimum?
- Let m_{x}^{i} be the count estimate of x in BF i
- We played with functions $g\left(m_{x}^{1}, m_{x}^{2}\right)$ to reduce FNs
- Our finding: significantly reduced FN rates for

$$
g(x, y)=\frac{x+y}{2}
$$

\rightarrow Performance: better FN rates, lookup only 20\% of the time

Performance Analysis

- Compare FP (blue), FN (red), TP (black), TN (green) rates as a function of space
- Very preliminary analysis
- Synthetic data from two discrete distributions
- Unif $\{0,1000\} \quad$ (left panel)
- Zeta (1.5) (right panel)
- Fixed parameters: $w=17, n=1000$

Metrics for $k=2$ and $w=17$

Metrics for $k=3$ and $w=17$

Metrics for $k=4$ and $w=17$

Metrics for $k=5$ and $w=17$

Summary

- Studied a variety of different Bloom filter types
- Implemented and published libBf, a C++11 Bloom filter library
- Started to study the trade-offs in the parameter space
- Next steps: more rigorous performance measurements needed

References I

國 Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM, 13:422-426, July 1970.

圊 Saar Cohen and Yossi Matias.
Spectral Bloom Filters.
In Proceedings of the 2003 ACM SIGMOD international conference on Management of data, SIGMOD '03, pages 241-252, New York, NY, USA, 2003. ACM.

Fan Deng and Davood Rafiei.
Approximately Detecting Duplicates for Streaming Data using Stable Bloom Filters.
In Proceedings of the 2006 ACM SIGMOD international conference on Management of data, SIGMOD '06, pages 25-36, New York, NY, USA, 2006. ACM.

References II

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache: A Scalable Wide-area Web Cache Sharing Protocol. In Proceedings of the ACM SIGCOMM '98 conference on Applications, technologies, architectures, and protocols for computer communication, SIGCOMM '98, pages 254-265, New York, NY, USA, 1998. ACM.
围 Ashwin Lall and Mitsunori Ogihara.
The Bitwise Bloom Filter.
Technical Report TR-2007-927, University of Rochester, November 2007.

國 MyungKeun Yoon.
Aging bloom filter with two active buffers for dynamic sets.
IEEE Trans. Knowl. Data Eng., 22(1):134-138, 2010.

Backup Slides

Bloom Filter Halving

(1)

(2)

(3)

