
A Concurrency Model for Event-Based Network Intrusion Detection

Matthias Vallentin

vallentin@icsi.berkeley.edu

Seth Fowler

sfowler@eecs.berkeley.edu

1 Introduction

Network intrusion detection systems (NIDS) follow the

communication in a network by inspecting the passing

packet stream and raising alerts upon suspicious activity.

The continuously rising traffic volume and the need to

do more analysis at increasing complexities pose fierce

performance challenges to these systems. Since NIDS

operate in real-time, they cannot defer expensive compu-

tation to a later point in time. A typical deployment of a

NIDS is illustrated in Figure 1.

Internet SiteTap

NIDS

Figure 1: Typical deployment of a NIDS.

The required processing power to address these grow-

ing performance requirements cannot be provided by

single-threaded, single-core architectures that are per-

vasive today. Performance improvements will instead

come from many-core architectures which can only be

harnessed by applications that feature a concurrent exe-

cution model.

Previous work identified that the key tasks in net-

work security analysis bear a rich potential for paral-

lelism [12]. In order to exploit this potential, it is crucial

to understand the domain-specific workflow of a NIDS.

Figure 2 visualizes the spectrum of parallelism that can

be extracted in the network security analysis pipeline. In

this figure, arrows represent the information flow from

one stage to the next; the number of arrows leaving a

particular stage corresponds to the data volume.

The first stage in the NIDS workflow dispatches pack-

ets to their corresponding flows. Since the arriving

stream of packets is inherently sequential, one appealing

solution is to implement packet demultiplexing in cus-

tom hardware [19].

The second stage operates on reassembled flows to an-

alyze the application-layer protocol; it offers a high po-

tential for parallelism. To see this potential, we have to

appreciate that port numbers are not a reliable indicator

for the protocol used in a connection. In order to re-

liably determine the actual application protocol, multi-

ple instances of all potential analyzers can run in paral-

lel [3] until the correct protocol is identified. As soon as

the correct protocol is found, the one remaining analyzer

parses the communication from there on as a series of

policy-neutral events (e.g., HTTP request, TCP connec-

tion shutdown, DNS reply, etc.) that are forwarded to the

detection logic.

These forwarded events are then processed at a per

flow granularity; for example, locating downloaded ex-

ecutables in an HTTP stream. More complex forms of

analysis – for example, detecting scanners by tracking

the unique hosts a particular machine attempts to connect

to – have a per aggregation unit granularity. In the scan

detection example, the aggregation unit is the connec-

tion originator. The potential parallelism is bounded by

the number of aggregation units and the extent to which

they share state.

The final stage, global analyses such as stepping stone

detection [21], offer the least degree of parallelism, as

they operate across multiple aggregation units.

Parallel tasks in this pipeline keep their own state, yet

share the same working data: multiple protocol analyz-

ers execute concurrently but operate on the same con-

nection. These properties map well to many-core archi-

tectures and allow for good cache locality by scheduling

threads with shared working data to the same core.

Our contributions in this project are threefold. First,

we design the necessary concurrency primitives that nat-

1

Packet Analysis

…

P
ac
ke
t
D
em
u
lt
ip
le
xe
r

Packets
Packet
Flows

Activity
 Events

Protocol
Analyzers

~104 ~105 ~104

Detection Logic

Filtered
Events

Further Filtered
 Events

~103 ~10-100Concurrent Instances

Figure 2: Spectrum of parallelism in the network security pipeline [15].

urally support the type of parallelism sketched above.

Second, we implement these primitives in an abstract

machine model. Third, we provide a quantitative eval-

uation of our implementation and elaborate on our expe-

rience with the LLVM toolchain.

The remainder of this paper is organized as follows.

We briefly introduce the context of our project in §2.

Thereafter, we describe our concurrency model in §3 and

evaluate our implementation in §4. We point out limi-

tations of our work in §5 and summarizing related work

in §6 before we conclude in §7.

2 Background

This section provides the necessary background to un-

derstand the context of our project. After discussing the

Bro NIDS in §2.1 we turn in §2.2 to HILTI, an abstract

machine for network intrusion detection.

2.1 Bro

For the scope this project, we focus on the Bro NIDS [11]

that features a rich-typed DSL to allow operators codify-

ing their analyses in terms of its key semantic steps. The

language has an asynchronous, event-based flavor that

enables the expression of network policy at a high level

of abstraction.

The implementation of the scripting language is quite

complex due to its high-level nature, and the language is

therefore interpreted. Together with the incurred over-

head of interpretation, the limited opportunities for opti-

mization render this a costly model compared to native

code execution. Recent measurements witness indeed

that Bro spends most of the time in the script interpreter.

2.2 HILTI

To overcome these critical limitations, a current research

effort by the ICSI networking group is developing an ab-

stract machine: the high-level intermediate language for

traffic inspection, or HILTI . The overarching goal of this

project is to create a generic platform geared towards the

domain of network intrusion detection and supporting

the field’s common abstractions and idioms in its instruc-

tion set. One specific goal is bridging the gap between

high-level abstractions to express a security policy and

the optimized native code needed to achieve the required

performance to operate on large-volume networks. 1

HILTI is conceptually divided into two parts. On the

one hand, the abstract machine serves as a compilation

target. From this perspective, it is key to offer language

constructs that identify high-level data parallelism, with-

out exposing the underlying concurrency implementa-

tion.

On the other hand, the target for the abstract machine

compiler is the open-source Low-Level Virtual Ma-

chine (LLVM) framework [4, 6], an industrial-strength

compiler toolchain. By building on top of LLVM,

many domain-independent standard optimizations can be

leveraged to generate efficient code optimized for mod-

ern CPUs.

The implementation consists of a runtime and a com-

piler framework.2 The runtime provides functionality

that is either difficult to generate or requires unavailable

instructions in LLVM. It is written in C but can be con-

verted to bitcode using LLVM’s GCC frontend.

1For the scope of this paper, we mostly restrict ourselves to the

discussion of HILTI in conjunction with Bro, although HILTI is also

beneficial in other network security related tasks.
2Since HILTI is still in a fledgling state, we spent a significant frac-

tion of our time implementing runtime features and basic infrastructure.

2

The compiler transforms HILTI code into LLVM bit-

code which can then be optimized and compiled in to

a native executable. To reduce development time, the

ICSI networking group chose to implement the compiler

framework in Python. The available Python bindings [7]

for LLVM facilitate constructing an in-memory represen-

tation of the generated LLVM code, making code gener-

ation much easier.

HILTI

Language

HILTI

Runtime

Bro

Policy Scripts

Native

Execution
Bro Binary

LLVM
LLVM-GCC,
pthreads

HILTI compiler

Figure 3: Components.

HILTI’s relationship with Bro is visualized in Fig-

ure 3. A Bro-specific compiler translates policy scripts

into the HILTI language; we hope to benefit from opti-

mizations particularly at this point in particular, because

the domain-specific semantics of the code are still pre-

served. In the next step, the HILTI compiler framework

transforms the HILTI program into LLVM bitcode. The

runtime library, written in C with pthreads, is also con-

verted into LLVM bitcode using the GCC frontend for

LLVM. In a final step, the Bro binary is linked statically,

generating a native executable. If the host application is

also compiled via the GCC frontend, LLVM can apply a

variety of link-time optimizations across the entire exe-

cutable.

3 Concurrency Model

Most of the parallelism available in a NIDS, as described

above, conforms to the pipe-and-filter and event-based

patterns. For aspects of the design which are pipelined,

streams of data which are logically separate can flow

through the pipeline in parallel, while individual pipeline

stages for a particular stream must be processed sequen-

tially. For the event-based components, there exists an

analogous partial order over the events, such that related

events are required to be processed in a particular or-

der with respect to each other, while unrelated events

are unconstrained. We therefore require a concurrency

model that expresses partial orders over tasks in an effi-

cient and scalable way. In §3.1, we give a concrete ex-

ample of how such a concurrency model appears in one

of the productivity-layer languages that HILTI supports.

In §3.2, we describe the underlying HILTI concurrency

model.

3.1 Concurrency in Bro

The multi-core version of Bro expresses concurrency im-

plicitly. The programmer thinks of his or her script in

terms of event handlers, each of which may access one

or more shared variables. These shared variables are ex-

plicitly annotated with a scope which identifies the gran-

ularity at which they are shared; each event handler may

only access shared variables from one scope. Scopes are

identified in natural, domain-specific terms; for example,

if a shared variable is in connection scope, all event

handlers processing the same connection share the same

copy of the variable. Bro includes predefined scopes for

common cases, but the user may define new scopes if

necessary. When event handlers share the same copy of

a shared variable due to this mechanism, we say that the

event handlers share the same instance of the scope, and

that they operate in the same execution context. The ex-

ecution context a particular event handler is running in

may be different for each invocation, but the scope used

to determine it is always the same.

The code fragment below demonstrates how scopes

are used in a Bro script.

originator scans: set[addr];

event new_connection(c: connection)

{

local responder = cidresp_h;

add scans[responder];

}

In this code, scans is a shared variable with

originator scope. It consists of a set of addresses;

there will be a separate such set for each originator

instance. The event new connection is automati-

cally placed in the originator scope since it accesses

scans; the Bro runtime will place a specific invocation

of new connection in a particular execution context

based upon the originator of the connection it will be op-

erating upon. new connection adds the responder of

the connection to scans; the particular copy of scans

is determined by its execution context.

The Bro concurrency model uses the execution context

of an event handler invocation to schedule it. It guar-

antees that all events in the same execution context will

execute serially, in temporal order. Events in different

execution contexts, on the other hand, may execute in

3

parallel, and no order of execution is guaranteed between

them. Because scopes are determined by the shared vari-

ables an event handler accesses, and events in the same

execution context execute in temporal order, no concur-

rent access to a shared variable is possible, and so no

locks are required.

Bro offers some additional features related to scopes,

such as the ability to override the automated classifica-

tion process if it would place the event handler in the

wrong execution context. Real-world experience of Bro

users porting their policy scripts to multi-core Bro sug-

gests that these features are unnecessary except in a few

unusual situations. These porting efforts have also shown

that scoped shared variables are sufficient to replace the

vast majority of global variables in Bro scripts, allowing

a great deal of parallelism with very little synchroniza-

tion.

Most communication between execution contexts can

be achieved using events: an event in one execution con-

text can fire an event in another execution context, pass-

ing whatever parameters are necessary. In unusual cases,

a Bro script may require a long-running event. Commu-

nication with this kind of event requires a different type

of primitive. Channels, which are thread-safe, type-safe

queues, serve this purpose. The details of channels in

multi-core Bro are still under discussion, so we cannot

provide any example syntax. Channels will be an inte-

gral part of other portions of the NIDS pipeline, such

as protocol analysis, where they will provide the means

for transmitting flows of network data between analysis

components; the details are beyond the scope of this pa-

per.

3.2 Concurrency in HILTI

HILTI’s concurrency model is simple and explicit. Its

unit of concurrency is the virtual thread, which consists

of a queue of continuations that will be executed in serial

order with respect to each other. Each virtual thread is

identified by an integer in a HILTI program. HILTI func-

tions may schedule function calls to execute on a partic-

ular virtual thread; these function calls will execute in

the order that they are scheduled. Virtual threads may

be run in parallel by the scheduler; in practice, each vir-

tual thread is multiplexed on a worker thread shared by

other virtual threads, with as many worker threads avail-

able as there are hardware threads in the system. The

left-hand side of Figure 4 illustrates the mapping from

execution context, through virtual and worker threads,

down to hardware threads.

The scheduler currently in use is a simple stateless

one that uses a Fowler-Noll-Vo hash function[10] to dis-

tribute the virtual threads as evenly as possible between

worker threads. We have considered more complicated

schemes that exploit state to assign the virtual threads

actually in use to worker threads evenly, but any such

scheme will require a potentially huge amount of state

due to the large number of virtual threads that HILTI can

support, and practical implementation constraints will

prevent such a scheduler from operating in constant time,

which is a serious flaw in the real-time environment of a

NIDS.

Each virtual thread has thread-local storage associated

with it. This storage may be used for variables which

must be shared between the functions running on a vir-

tual thread, such as the scoped shared variables discussed

in §3.1; it is a distinct concept from thread-local storage

at the worker thread level, since a single worker thread

may be responsible for many virtual threads. The HILTI

runtime automatically manages this storage; HILTI pro-

grams may simply refer to shared variables, and they will

automatically receive the appropriate copy for the current

virtual thread. One flaw to this system, however, is that

thread-local storage cannot be collected by the HILTI

garbage collector, since the garbage collector cannot tell

when the program does not intend to schedule any more

functions to a certain virtual thread that may depend on

existing shared variables. For this reason, long-running

programs will have to explicitly state that the thread-local

storage on a certain virtual thread may be reclaimed. We

are still discussing the detailed mechanisms by which

thread-local storage will be implemented, and so it is not

included in the current version of HILTI.

For long-running tasks that may need to communicate

during execution, HILTI provides channels. These are

thread-safe queues directly analogous to the ones dis-

cussed in §3.1. At the HILTI level, they are responsi-

ble for both the explicit uses of channels visible in the

higher-level languages in the NIDS pipeline and low-

level functions such as communication with hardware.

Channels will hold the queue of continuations in each

virtual thread in a future version of HILTI. They are

also useful to implement features of the higher-level lan-

guages such as global variables which do not correspond

to a concept in HILTI.

Because NIDS have to operate in real-time and must

process packets at line-rate, it is important that each

continuation executing on a worker thread finishes in

a bounded amount of time. Worker threads implement

cooperative multitasking: they execute their continua-

tions sequentially, requiring very little overhead. This

does not allow them to preempt a long-running contin-

uation, which means that it is important that no contin-

uation be allowed to block. This goal will be achieved

by using channels for all I/O and all synchronous com-

munication. Each attempt to read from a channel that

would block in a conventional program will cause a new

continuation to be scheduled on the same virtual thread

4

Explicit Channel,

Global Variable

channel Data Type

Channel Implementation

Native Assembly Code

HILTI

Language

HILTI

Runtime

Bro

Bro compiler

HITLI compiler

Native

Execution

3rd-party SW

Hardware

(scope, instance)

Virtual Thread (VT)

Worker Thread (WT)

Hardware Thread (HT)

Bro compiler1:1

HITLI compiler

LLVM-GCC, pthreads

*:1

1:1 or *:1

Figure 4: Concurrency stack.

in a special queue aside from the main one. Any other

continuations which are scheduled to the same virtual

thread will be moved to this special queue as they are

encountered; this preserves HILTI’s concurrency seman-

tics. When the channel is able to fulfill the request, it no-

tifies the worker thread, which returns the continuations

in the special queue to the main queue. Special queues

are created as needed whenever virtual threads would or-

dinarily block. We are currently working on implement-

ing these features; although channels are currently work-

ing, their interaction with the scheduler was not ready in

time for this paper.

4 Evaluation

This section presents our preliminary evaluation. After

explaining our methodology in §4.1, we discuss our find-

ings in §4.2.

4.1 Methodology

Since HILTI is designed for problems which are natu-

rally pipelined or event-based, we selected the Sieve of

Erastothenes[20] as a suitable algorithm to benchmark.

In the Sieve of Erastothenes algorithm, prime numbers

are generated using a pipeline approach. At each stage of

the pipeline, a list of integers is received; the first number

in the list is the current prime. Every number in the list

which is divisible by the current prime is removed from

the list, and the remaining numbers are passed on to the

next stage in the pipeline. The input to the first stage is a

list of integers starting at 2 and ending at the maximum

number of interest. After the algorithm has terminated,

the Sieve of Erastothenes will have found every prime

number in this range.

We implemented the algorithm in three languages:

HILTI, C, and Ruby 1.9. In HILTI, the algorithm is

most naturally implemented by having a virtual thread

for each prime (that is, each pipeline stage) and schedul-

ing a function on that virtual thread for each number that

pipeline stage must process; knowing the prime number

corresponding to the virtual thread it’s running on, the

function simply passes the number it receives to the next

stage in the pipeline (and hence the next virtual thread) if

the number is not evenly divisible by the current prime.

To process a large range of numbers, a huge number of

virtual threads must be used and a huge number of func-

tions must be scheduled, which makes this algorithm an

excellent test of HILTI’s concurrency infrastructure.

There is one problem with this implementation:

thread-local storage must be used so that each virtual

thread knows what prime it corresponds to. Since we

have not yet implemented this feature, we simulated it

in a very simple manner using C functions that set and

get key-value pairs stored on a linked list; this is dra-

matically slower than our eventual thread-local storage

solution will be. In addition, garbage collection is not

yet enabled for HILTI, which means that the memory al-

located for each continuation cannot be reclaimed.

In C and Ruby, which do not have a notion of vir-

tual threads, we implemented the algorithm using the

standard threading facilities for each language (pthreads

for C, the Thread class for Ruby) and made use of one

thread per pipeline stage. Passing numbers between

stages is accomplished using thread-safe queues. Un-

like the HILTI version, the C and Ruby versions had to

manually manage their threading and communication re-

sources. We created two versions of the C program; C.j

uses pthread join to ensure that all threads have ter-

5

HILTI HILTI.c Ruby C.j C.v

A
v
e

ra
g

e
 p

ri
m

e
s
 p

e
r

s
e

c
o

n
d

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

(a) Average primes per second.

HILTI HILTI.c Ruby C.j C.v

N
u

m
b

e
r

o
f

c
a

lc
u

la
te

d
 p

ri
m

e
s

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0

(b) Number of calculated primes until termination.

HILTI HILTI.c Ruby C.j C.v

M
e

m
o

ry
 u

s
a

g
e

 p
e

r
p

ri
m

e
 (

M
B

)

0
2

4
6

8

(c) Memory usage per prime (MB).

Figure 5: Preliminary results.

minated, while C.v uses a volatile variable to check for

termination. C.v was created because the original bench-

mark, C.j, runs out of thread resources so quickly.

We performed the benchmarking on an AMD Athlon

X2 BE-2400, a 2.3 GHz dual-core machine with 2GB

of RAM. Each program started with a list of numbers

from 2 to 50,000 and was allowed to run until it gener-

ated all of the prime numbers in that range. Since the

HILTI implementation was the only one able to finish

without crashing, we increased the upper end of its range

slightly, to 52,500, which was sufficient cause it to crash

as well. This enabled us to see the point of failure for all

of the implementations. It would have been better to use

exactly the same range for all of the implementations,

but we did not notice this problem until it was too late

to correct; we don’t expect the results to be substantially

effected.

To calculate average running time, we executed each

program for ten consecutive runs. Memory usage was

calculated using the RSS column of ps’s output at the

instant each program crashed; the program was frozen

at that point using a gdb breakpoint. Memory usage

monotonically increased during program execution and

was essentially constant between runs for each program.

The number of primes calculated is the maximum each

program achieved before crashing; it was also essentially

constant between runs, despite the parallel nature of each

program, because the crashes were usually due to run-

ning out of resources such as threads which are almost

perfectly correlated with the number of primes success-

fully calculated in this algorithm.

4.2 Results

Figure 5b displays the total numbers of prime numbers

that each implementation was able to calculate before

crashing. The HILTI implementation was able to calcu-

late almost 81% more primes than its closest competitor,

the Ruby implementation. It finally terminated due to

running out of heap space after allocating almost 4GB of

memory. The remaining benchmarks all terminated due

to exhausting their supply of threading resources: in the

Ruby case, Thread.new threw an exception, while in

the case of the C implementations pthread create

returned EAGAIN. As mentioned in §4.1, we created C.v

because C.j ran out of threading resources so quickly;

however, C.v crashed after performing about the same

amount of work. This indicates that the C version creates

new threads much faster than it can process the work for

each thread; a different design could have avoided this

problem, but it would no longer look much like the sim-

ple HILTI design.

In Figure 5c, we see the amount of memory that each

implementation required per calculated prime. The C im-

plementations appear to require dramatically more mem-

ory, but this is misleading. While there may be some

6

inefficiency in the thread-safe queue implementation we

used in the C versions, the vast majority of the discrep-

ancy is caused by overhead. The Ruby and HILTI imple-

mentations ran long enough for the overhead of each pro-

gram to be amortized over a very large number of primes,

while the C implementations died almost immediately.

HILTI required slightly more overhead per prime than

Ruby; this is attributable to a combination of HILTI’s

garbage collection not yet being enabled and the inherent

overhead of creating a HILTI continuation for each num-

ber in each pipeline stage. The lack of garbage collection

is the larger problem; by the end of the HILTI program’s

run, the vast majority of memory is being occupied by

dead continuations.

The number of primes each implementation calculated

per second is shown in Figure 5a. The C implementa-

tions, unsurprisingly, are the fastest by far. The Ruby

version is an order of magnitude slower, and the HILTI

version’s speed is a quarter of that. This result initially

surprised us, as it did not correspond to our intuition.

However, we noticed that the HILTI version has allocated

almost 4GB when it crashes, which is more memory than

is physically present in the machine. We suspected that

the memory leak caused by the lack of garbage collection

was causing the HILTI version to use swap space, which

was slowing it down. To test this theory, we implemented

a revised HILTI version, HILTI.c, intended for compar-

ison against the Ruby version. HILTI.c stops running

after it has calculated the same number of primes that the

Ruby version calculated, enabling us to compare the two

after they have performed the same amount of work.

Figure 5a shows that HILTI.c is slightly faster than

the Ruby version; it computes 42.00 primes per second

as compared to 39.98 with Ruby. Figure 5c shows that

HILTI.c also uses less memory per prime computed than

the Ruby implementation, which is quite surprising since

it leaks memory so badly. Considering that the HILTI

version schedules a new function on a virtual thread and

executes it for each number in each pipeline stage, a

tremendous amount of overhead, it is quite impressive

that it was able to outperform the Ruby version in terms

of both speed and memory usage. This is a very encour-

aging result for us, since even with HILTI extremely un-

optimized and missing crucial components, it is able to

perform at the level of a popular language which has ex-

isted for many years. We are confident that with further

work we will be able to improve dramatically improve

HILTI’s efficiency.

5 Limitations

We acknowledge that our work has some limitations. In

order to support freezing the current execution state of

functions to resume them at a later point of time, HILTI

function calls are heap-allocated continuations [1] im-

plemented in continuation passing style (CPS). Unfor-

tunately, as mentioned in §4.1, the garbage collector is

not yet wired into the compiler framework. Hence mem-

ory allocated on the heap is not freed, which explains the

high footprint experienced in our evaluation.

Moreover, Python bindings for LLVM currently do not

offer an option to enable tail-call optimizations (TCO).

However, HILTI’s execution model fundamentally re-

lies on the LLVM optimizer to eliminate tail calls. Al-

though a patch we recently located fortunately provides

the missing functionality, for the majority of the project’s

duration we had to manually edit the extremely ver-

bose machine-generated LLVM intermediate represen-

tation files if we wanted TCO to be applied success-

fully. We are still unable to enable TCO between dif-

ferent compilation units, since enabling LLVM link-time

optimizations of any kind causes linking to fail. Our in-

vestigation of this issue is ongoing.

6 Related Work

Parallelizing network security analysis is a multi-faceted

undertaking, since the various angles allow for distinc-

tive approaches. The popular Snort NIDS [13] is based

on a signature matching engine, where regular expres-

sions match byte-wise on packet streams. Offloading

pattern matching to FPGA-based or custom hardware is a

common approach to gain further performance improve-

ments [14, 5, 8, 2]. However, Moore’s Law does not hold

for these customized solutions. Not only do network pro-

cessors evolve at a much slower pace, but newer incarna-

tions often break code compatibility to older versions,

forcing developers to reimplement a significant fraction

of their code. In addition, it is difficult express com-

posable high-level analyses with the available low-level

primitives which are geared towards a stateless execution

model.

There also exist approaches to gain speed-up by exe-

cuting multiple Snort instances in parallel [18, 9] or by

offloading parts of the analysis to the GPU [17]. We be-

lieve that HILTI poses an attractive alternative method to

compile Snort rules into platform-specific code.

Current efforts to parallelize the single-threaded ver-

sion of Bro are inspired by our previous work in [16],

where we built a NIDS cluster on commodity hardware

to load-balance connections across a set of communicat-

ing Bro instances. The stateless packet dispatcher for-

wards packets at Gbps rates and will replace the hith-

erto single-thread Bro versions at Lawrence Berkeley

National Laboratory in the near future. Further, a Bro

cluster of approximately 30 machines will soon monitor

the traffic of the entire UC Berkeley campus.

7

7 Conclusion

The steadily growing traffic volume network intrusion

detection systems need to monitor imposes high perfor-

mance requirements, as these systems need to operate in

real-time and have to perform both more and more so-

phisticated tasks. With the collapse of Moore’s Law for

single-core architectures, NIDS have to gain their perfor-

mance from tomorrow’s many-core CPUs.

In this project, we designed the necessary toolkit to

harness the available parallelism in the network security

pipeline [11]. The primitives we provide form the par-

allel building blocks of the HILTI abstract machine, a

versatile execution model and compilation target for net-

work traffic applications.

While HILTI contains to be in an early stage of devel-

opment, even at this stage we were able to best Ruby in

terms of speed and memory usage for an identical work-

load. We are encouraged by these results and feel confi-

dent that further development of HILTI will make implic-

itly parallel productivity languages like multicore Bro a

reality in the field of network intrusion detection.

We expect further performance improvements by

switching to lock-free data structures in the scheduler

and channel implementation, and by enabling garbage

collection. Most notably, our project lays the founda-

tion stone for future work, of which a major part is the

implementation of a HILTI compiler for the Bro script-

ing language. The provided primitives enable a natural

translation of the scoped execution model to HILTI.

References

[1] Andrew W. Appel. Compiling with continuations.

Cambridge University Press, New York, NY, USA,

1992.

[2] Young H. Cho and William H. Mangione-Smith.

Deep Network Packet Filter Design for Reconfig-

urable Devices. ACM Trans. Embed. Comput. Syst.,

7(2):1–26, 2008.

[3] Holger Dreger, Anja Feldmann, Michael Mai, Vern

Paxson, and Robin Sommer. Dynamic Application-

Layer Protocol Analysis for Network Intrusion De-

tection. In USENIX-SS’06: Proceedings of the

15th conference on USENIX Security Symposium,

Berkeley, CA, USA, 2006. USENIX Association.

[4] Chris Lattner and Vikram Adve. Llvm: A compi-

lation framework for lifelong program analysis &

transformation. In Proc. International Symposium

on Code Generation and Optimization, 2004.

[5] Janghaeng Lee, Sung Ho Hwang, Neungsoo Park,

Seong-Won Lee, Sunglk Jun, and Young Soo Kim.

A high performance NIDS using FPGA-based reg-

ular expression matching. In SAC ’07: Proceedings

of the 2007 ACM symposium on Applied comput-

ing, pages 1187–1191, New York, NY, USA, 2007.

ACM.

[6] The LLVM Compiler Infrastructure. http://

llvm.org.

[7] llvm-py: Python Bindings for LLVM. http://

mdevan.nfshost.com/llvm-py.

[8] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan.

Compiling PCRE to FPGA for Accelerating

SNORT IDS. In ANCS ’07: Proceedings of the

3rd ACM/IEEE Symposium on Architecture for net-

working and communications systems, pages 127–

136, New York, NY, USA, 2007. ACM.

[9] NinjaBox-Z and Applied Watch. http:

//www.endace.com/assets/files/

ninjaBoxZ_applied_watch.pdf.

[10] Landon Curt Noll. Fowler / Noll / Vo (FNV)

Hash. http://www.isthe.com/chongo/

tech/comp/fnv/index.html.

[11] Vern Paxson. Bro: A System for Detecting Net-

work Intruders in Real-Time. Computer Networks,

31(23–24):2435–2463, 1999.

[12] Vern Paxson, Krste Asanovic, Sarang Dharma-

purikar, John Lockwood, Ruoming Pang, Robin

Sommer, and Nicholas Weaver. Rethinking Hard-

ware Support for Network Analysis and Intrusion

Prevention. In Proc. USENIX Workshop on Hot

Topics in Security, 2006.

[13] Martin Roesch. Snort: Lightweight Intrusion De-

tection for Networks. In In Proceedings of the Sys-

tems Administration Conference, 1999.

[14] Reetinder Sidhu and Viktor K. Prasanna. Fast regu-

lar expression matching using fpgas. In FCCM ’01:

Proceedings of the the 9th Annual IEEE Sympo-

sium on Field-Programmable Custom Computing

Machines, pages 227–238, Washington, DC, USA,

2001. IEEE Computer Society.

[15] Robin Sommer. Exploiting Multi-Core Proces-

sors For Parallelizing Network Intrusion Preven-

tion. TRUST Seminar Series, UC Berkeley, May

2009.

[16] Matthias Vallentin, Robin Sommer, Jason Lee,

Craig Leres, Vern Paxson, and Brian Tierney. The

NIDS Cluster: Scalably Stateful Network Intru-

sion Detection on Commodity Hardware. In RAID

8

’07: Recent Advances in Intrusion Detection, 10th

International Symposium, Lecture Notes in Com-

puter Science, pages 107–126. Springer, September

2007.

[17] Giorgos Vasiliadis, Spiros Antonatos, Michalis

Polychronakis, Evangelos P. Markatos, and Sotiris

Ioannidis. Gnort: High Performance Network In-

trusion Detection Using Graphics Processors. In

RAID ’08: Proceedings of the 11th international

symposium on Recent Advances in Intrusion De-

tection, pages 116–134, Berlin, Heidelberg, 2008.

Springer-Verlag.

[18] Javier Verdú, Mario Nemirovsky, and Mateo

Valero. MultiLayer processing – An Execution

Model for Parallel Stateful Packet Processing. In

ANCS ’08: Proceedings of the 4th ACM/IEEE Sym-

posium on Architectures for Networking and Com-

munications Systems, pages 79–88, New York, NY,

USA, 2008. ACM.

[19] Nicholas Weaver, Vern Paxson, and Jose M. Gon-

zalez. The Shunt: an FPGA-based Accelerator for

Network Intrusion Prevention. In FPGA ’07: Pro-

ceedings of the 2007 ACM/SIGDA 15th interna-

tional symposium on Field programmable gate ar-

rays, pages 199–206, 2007.

[20] Eric W. Weisstein. Sieve of Eratosthenes.

http://mathworld.wolfram.com/

SieveofEratosthenes.html. Wolfram

Mathworld.

[21] Yin Zhang and Vern Paxson. Detecting Stepping

Stones. In SSYM’00: Proceedings of the 9th con-

ference on USENIX Security Symposium, pages 13–

13, Berkeley, CA, USA, 2000. USENIX Associa-

tion.

9

