Quantifying Persistent Browser Cache Poisoning

Matthias Vallentin

mavam@cs.berkeley.edu

Abstract

Web browsers rely on caching for improving perfor-
mance and for reducing bandwidth use. Cache poisoning
poses alarming security concerns in light of HTTP’s lack
of an integrity guarantee in conjunction with the proper-
ties of its caching behavior.

In our previous study we demonstrated the simplicity
of replacing objects in the browser cache with malicious
code to enable a persistent attack. This paper expands
on this topic with a quantitative analysis of the impact of
this threat. Based on full-packet traces from two distinct
environments — a large research lab in California and a
network in rural northern India — we conduct an empiri-
cal study showing that (i) an attacker can with high prob-
ability achieve a long-lived attack vector when poison-
ing a web object picked at random and, (ii) that the high
degree of object sharing, especially of executable code,
enables an attacker to achieve high-coverage attack vec-
tors by only poisoning a small set of intensively shared
objects.

We believe that the increasing popularity of Web 2.0
mash-ups will increase the degree of sharing, making
the discussed attack extremely wide in scope. In par-
ticular, we note the conceptual security shortcomings
and risks of JavaScript content distribution networks
(CDN:s), techniques used by cellular carriers for com-
pressing content on-the-fly, advertising networks, and
popular services to track users’ surfing behavior.

1 Introduction

The purpose of browser cache is to store web content for
performance reasons in order to both reduce the server
load and avoid unnecessary requests for an unchanged
resource. The ongoing trend towards faster, richer, and
more sophisticated web applications makes caching an
indispensable component of fulfilling the user’s expecta-
tions for responsiveness. Unfortunately, HTTP protocol

Yahel Ben-David
yvahel@cs.berkeley.edu

was not designed with security considerations in mind,
opening it up to a variety of trivial attack vectors in the
presence of a network attacker.

In particular, HTTP does not provide integrity guar-
antees, allowing an attacker to modify the requested ob-
jects by the victim and to add malicious, executable code,
mostly in the form of JavaScript. Although this is a well-
known threat, little attention has been paid to the con-
sequences when the attacker deliberately alters the ob-
ject’s caching properties in order to persistently plant ma-
licious code in the victim’s browser cache.

Consider the scenario where a victim surfs the web
in a coffeeshop while being exposed to an attacker who
not only injects malicious code in-flight, but also changes
the caching properties of the objects requested by a vic-
tim; although the attack vector only exists while victim
and attacker share the same network, the malicious code
remains in the victim’s cache, potentially for weeks or
months, ready to execute each time the victim’s browser
makes use the poisoned object. We demonstrate that it
is sufficient to poison only a few high-profile targets to
render this attack a severe threat, even when the victim is
only exposed for a short time period to the attacker.

The remainder of the paper is structured as follows:
after familiarizing the reader with the relevant HTTP
caching basics in §2, we present our evaluation in §3.
We then discuss the impact of this attack in §4. We give
a brief overview of mitigation approaches in §5 and sum-
marize related work in §6. Finally, we give concluding
remarks in §7.

2 HTTP Caching

Caching in HTTP [13] is based on two principal mecha-
nisms, expiration and validation.

In order to allow clients to verify the freshness of
an object, the server specifies its expiration, using ei-
ther the Expires header or max—age directive in the
Cache-Control header. A fresh object does not need

Environment Start End Length | Connections Size HTTP
LBNL 4/21/2010 12:05pm | 4/23/2010 12:34pm | 48 hours | 22,200,000 | 1,178.5GB | 95.9 %
AirJaldi 3/9/2010 4:27pm 3/11/2010 8:47am | 40 hours 837,900 81.6 GB 99.5 %
Table 1: Summary of the two packet traces used in this paper.
Browser | Reload | ForcedReload | 3.1 Data
i 6. i ®
Firefox 3.6.3 (Win/Mac) ¢ Cul/se+ 5 Our dataset consists of two full packet traces from con-
Internet Explorer 8 C Ctrl + F5 trasti . s al h institute in Cal
Safari 4.0.5 (Mac) c Shift + Reload trasting environments: a large research institute in Cal-
a ifornia, USA, and a rural community in the Indian Hi-
Chrome 5.0 beta (Mac) C N/A . .
o b malayas. The high-order details of our data are summa-
pera 10.10 (Mac) u F5 ized in Table 1
Opera 10.53 (Mac) C N/A fizedin fable L.

2 On Windows, Ctrl/Shift + F5 supposedly bypasses the cache [3].
b Only of the cached URL and not the entire DOM.

Table 2: Browser validation behavior in different scenar-
ios. We denote a conditional request by C and an uncon-
ditional request by U/.

to be refetched, thereby avoiding unnecessary requests
entirely. An expired object must be validated by asking
the origin server (i.e., not an intermediate cache) if the
local copy can still be used.

For this purpose, HTTP enables validation by means
of conditional requests, in which the client includes a
validator that has been stored with the original cache en-
try. The server compares the received validator against
the current validator, and, if these values match, re-
sponds with a 304 (Not Modified) status code. If the
values do not match, the server returns the full re-
sponse. HTTP 1.1 distinguishes between strong and
weak validators. A strong validator necessarily changes
when the entity changes, whereas a weak validator only
changes when significant semantic changes occur. The
Last-Modified header is implicitly weak, as it of-
fers only per-second granularity. Strong validators are
implemented by means of an entity tag (ETag), which is
a custom value chosen by the server and placed in the
ETag header.

3 Evaluation

In this section, we quantify the threat posed by browser
cache poisoning. After presenting our datasets in §3.1,
we look at how and when browsers validate cache en-
tries. Thereafter, we study the object cacheability in §3.3
from a general perspective. Not only does this enable us
to gauge the relevant fraction of vulnerable objects, but
it also allows us to quantify the persistence aspect. Then,
in §3.4, we identify high-profile targets that are particu-
larly attractive for cache poisoning.

The first environment is the Lawrence Berkeley Na-
tional Laboratory (LBNL, [16]), which is the oldest of
the U.S. Department of Energy’s national laboratories
and managed by the University of California, Berkeley.
Its approximately 4,000 users and 13,000 hosts are con-
nected to the Internet via a 10 Gbps uplink. We captured
a 48-hour full packet trace from April 21 to April 23 with
22.2 million connections (95.9 % HTTP).

The second environment is the AirJaldi [1] rural wire-
less network serving mostly the Tibetan community-in-
exile. The network caters to about 10,000 users and has
an uplink totaling 10 Mbps. The AirJaldi network cur-
rently uses several layers of NAT devices, limiting the
visibility into the network at the granularity of a single
host, since our vantage point is at the central gateway to
the Internet. The trace we captured spans 40 hours from
March 9 to March 11 with 837.9 thousand connections
(99.5 % HTTP).

Since the attacker is only interested in manipulating
executable object types that the browser interprets as
code, we restrict our following discussion to HTML and
JavaScript. Although Flash is another candidate carrying
executable code, it takes more effort for the attacker to
inconspicuously replace Flash content, which is why we
address it only briefly.

In both environments, images account for the largest
share of cacheable objects, as depicted by Figure 1;
cacheable HTML and JavaScript only account for
2.571527% and 4.83/4.06 % respectively for LBN-
L/AirJaldi. We continue to use this notation throughout
the paper where the first number is from LBNL data and
the second from AirJaldi. The displayed shares are based
on unique URL counts with stripped parameters (such as
?g=foo&k=v) to avoid a sampling bias in favor of fre-
quently visited sites. Unless otherwise noted, we apply
this sanitization step in all remaining analyses.

To further winnow down the set of candidate targets,
we examine the validator type. In principle, both strong
and weak validators represent potential targets, but we
restrict our analysis on weak validators, because they are

other

text/plain
text/css
text/javascript

N/A image/jpeg

text/html

image/png

image/gif

(a) LBNL.

other

application/x-shockwave-flash

text/html

text/css

text/javascript

image/png image/jpeg

image/qif

(b) AirJaldi.

Figure 1: Breakdown of cacheable objects by MIME type.

easier to analyze with a short measurement time window.
This is due to the fact that a response with a weak val-
idator contains an exact last modification date, whereas a
strong validator only includes an object hash. As shown
in Figure 2, the majority of HTML traffic is not cacheable
in both LBNL and AirJaldi. We hypothesize that this
is due to the prevalence of dynamic web applications
that generate most of the content on-the-fly. The use of
weak validators dominate for JavaScript. For compari-
son, we also included Flash objects, which, not surpris-
ingly, cache well due to their larger size.

3.2 Validation Behavior

Recall that the cache poisoning attack will only remain
persistent when the browser (i) either does not validate
the cache entry at all, or (ii) when a validation of a con-
ditional request succeeds. Since the attacker sets an ex-
piration time to oo, only an unsuccessful validation or an
unconditional request can overwrite a malicious cache
entry with a clean one. Hence, we now investigate the
client-side browser validation behavior.

The browsers and conditions that we tested are sum-
marized in Table 2. As expected, we also find all
browsers suppress requests for a fresh cache entry and
issue a conditional request when an entry becomes
stale. All tested browsers issue a conditional re-
quest on reload, except for Opera 10.10 which adds a
Cache-Control: no-cache tothe request, render-

ing it unconditional. Opera’s reload behavior also differs
when hitting the reload button compared to pressing F5;
the former only triggers an unconditional request for the
cached URL, whereas the latter validates the entire DOM
tree. Even different browser versions differ. Opera 10.53
on the Mac does not support forced reload by either F5
or Shift + click Reload.

Overall, we find that current browsers do a conditional
request on reload, browser restart, and wake-up from
standby, and do an unconditional request only if the user
explicitly requests it via a forced reload, assuming that
the browser supports it in the first place.

3.3 Cacheability

Since a network attacker has control over the object’s ex-
piration, we assume it to be co. That is, the cache en-
try never expires and will always stay fresh in victim’s
cache. We further assume, based on the previous sec-
tion, that the victim does not initiate a forced reload, but
will only send conditional request for validation. Now,
only an unsuccessful validation overwrites the malicious
cache entry, which turns the problem of quantifying the
attack persistence into a function of the object’s lifetime,
which we define as the mean difference between two
consecutive modification times. Note that unlike the ex-
piration, the lifetime is a random quantity.

Our measurement window is very small compared to
the values the lifetime can take, and we can only observe

B not cacheable
O strong validator
O weak validator

0.10
L

Fraction of unique URLs
0.06
1

0.04
L

0.00

text/html
text/javascript

..x.shockwave.flash

(a) LBNL.

B not cacheable
O strong validator
O weak validator

0.10
1

Fraction of unique URLs

0.04
1

g —]
g
o

text/html
text/javascript

..x.shockwave.flash

(b) AirJaldi.

Figure 2: Validator breakdown measured as the fraction of unique URLs (with stripped parameters) for a given MIME
type. The bars for each type sum up to the total fraction of unique URLSs of that type.

Figure 3: Lifetime estimation for one object. Let
m; be the modification time obtained from the
Last-Modified header and ¢ be ¢ the sampling time
in our measurement window, then the observed fruncated
lifetime sample of the objectis I, = t —m;, whereas the
actual lifetime sample is l; = m; 1 —m; > 1.

a single sample of the truncated lifetime, as illustrated
in Figure 3. Let m; be the time in the Last-Modified
header and ¢ be the measurement time, then the truncated
lifetime sample 7 is I;; = ¢t — m;, whereas the actual
lifetime sample is [; = m;11 — m;, with [; < [;. If
we observe one or more modifications of an object in
our measurement window, we take the maximum over
all lifetime samples including the truncated lifetime. We
use /; as an estimate for /;. We plan to give a more rig-
orous definition and estimation of lifetime based on ho-
mogeneous Poisson processes in the future, as sketched
in Appendix B.

Unlike the lifetime, the expiration of an object is con-
stant, which makes it independent of the measurement

window size and hence an attractive candidate as a lower
bound on the lifetime. The relationship between expira-
tion and lifetime is illustrated in Figure 4, which shows
the empirical cumulative distribution functions (ECDFs)
for HTML and JavaScript. The median expiration of
JavaScript is 1/30 days compared to a median lifetime
of 57/67 days (Figure 4a and 4a). We observe a larger
discrepancy for HTML: the median expiration is 5/30
minutes, whereas the median lifetime is 295/16 days
(Figure 4c and 4d).

Consider an attacker who randomly picks one object
from the victim’s surfing session, and wants to perform
a cache poisoning attack that survives at least one week.
That is,

P[Xr>1W]=1-P[Xy < 1W] =1- FT(1W)

where X7 ~ ﬁnT is a random variable denoting the
lifetime of an object with MIME type 7T, and ﬁg; de-
noting the corresponding ECDF calculated from the ;-
samples of n distinct objects. This probability equals
to 0.75/0.79 for JavaScript and 0.73/0.56 for HTML.
Therefore, we conclude that long-lived cache poisoning
attacks are easy to conduct.

1.0

< —— Expiration
- Maximum Lifetime

0.6 08
L

ECDF

0.4

0.2

0.0

im 1h d 1w 1y 1oy

(a) LBNL (JavaScript).

1.0

- —— Expiration
- Maximum Lifetime

08

ECDF
0.6
L

0.4

0.2

0.0

im 1h d 1w 1y 1oy

Time

(c) LBNL (HTML).

ECDF

ECDF

1.0

—-| — Expiration
- Maximum Lifetime

0.8

0.6

0.4

0.2

10y

Time

(b) AirJaldi (JavaScript).

1.0

—-| — Expiration
- Maximum Lifetime

0.8

0.6
L

0.4

0.2
L

0.0

iw 1M 1y 10y

Time

(d) AirJaldi (HTML).

Figure 4: Relationship between expiration and lifetime. The x-axis shows time in seconds on a logarithmic scale.

3.4 Shared Cache Access

The attacker’s code can only run while the victim stays
on a page which includes the code. When the victim
navigates away, the attacker has lost the opportunity to
interact with the victim. Therefore, poisoning the cache
is particularly effective for objects shared across multiple
sites because it increases the frequency that the malicious
code executes.

Let a browsing session be a set of URLSs that the vic-
tim surfs to in a given time window. Then, define the at-
tack coverage to be the fraction of pages that execute the
maliciously cached code divided by the total number of
pages visited for a given session. A coverage of 1 means
the attacker can execute code on every page, whereas 0
coverage means the attacker’s code does not execute at
all.

To identify the most attractive targets that will maxi-
mize the attack coverage, we conduct the following ex-
periment. Our key insight is that largely shared ob-
jects exhibit a high number of unique referrers. In Fig-
ure 5, we plot the number of unique referrers of an object
against its rank, which is its index when sorting all ob-
jects by their number of referrers in decreasing order.

The object distribution is Zipf-like, which is aligned
with our intuition that only a few popular URLs are
highly shared. Amongst the MIME types that can carry
executable code, JavaScript is shared the most. We list
the top 10 JavaScript objects in Table 3. The majority
of these objects stem from advertisement networks and
tracking services (see §4) and 30/70 % of the objects be-
long to Google. Due to the increasing popularity of Web
2.0 mash-ups, we believe that the amount of sharing will
increase in the future, which facilitates achieving a high

5000
|

X+ + ot o application/x-shockwave—flash
g A text/html
% + text/javascript
[ANN
A
_ 9N
g - e, Ny
2] cca%
Q’a
®
2 LY
2 o
g S
@
o |
I [rs]
g
S
=}
o |
—
7 %
«lR
-
- -
T T T T T
1 10 100 1000 10000
Rank
(a) LBNL.

+ o application/x-shockwave-flash
+ + A text/html
+ text/javascript

200
|

50
|

Unique Referrers

10
|

- -

- E

«R L
«ln L

N <A -
- - o
T T T T T
1 10 100 1000 10000
Rank
(b) AirJaldi.

Figure 5: The number of unique referrers of per unique cacheable object is proportional to its rank. Note the log-
arithmic scale on both axes. The Zipf-like object distribution demonstrates that it is quite effective to poison a few
high-profile targets in order to substantially increase the coverage of the attack.

attack coverage. Note that the referrer numbers serve
only as a lower bound, because they have been calcu-
lated from cacheable objects only. Our next experiment
seeks to increase the precision of this bound.

To this end, we pick one specific object that is easier to
analyze: ga. js from Google Analytics, whose number
of unique referrers is 2266/358. It is easier to analyze
because each visit on a page with Google Analytics trig-
gers a request for www.google-analytics.com/
__utm.gif, a 1x1 pixel image which includes detailed
user statistics in its request parameters. Since the number
of unique referrers for __utm.gif represents an exact
estimate, we can use it as a proxy for ga . js which al-
lows us to understand the impact of caching on absorb-
ing visible requests.!. The number of unique referrers in
__utm.gif requests amounts to 64,995/3,789. This
is a factor 28.7/10.6 difference. In fact, the referrers
in __utm.qgif requests represents 1.0/0.9 % of all re-
quested URLs, or 14.0/7.1 % of all hosts.

Since it is possible to achieve a coverage of 14 % just
by poisoning Google Analytics, we conclude that it is
enough to poison a few heavily shared objects in order to
achieve a substantial coverage.

Note that we can only use this example to compare cacheable ob-
jects with similar expiration times.

4 Impact

In the previous section, we have shown that (i) object
lifetimes are sufficiently long for persistent cache poi-
soning attacks and that (i) it is enough to target a few
intensively shared objects to gain a high attack coverage.
In this section, we highlight the practical implications of
these findings with examples involving tracking and ad-
vertisement services (§4.1), JavaScript CDNs (§4.2), and
cellular carriers (§4.3).

4.1 Tracking and Advertisement

Tracking services enable a web site operator to extract a
plethora of statistics from a user in order to understand-
ing of user’s surfing behavior and optimize the site ac-
cording to it. The gathered information includes the time
a user stayed on a page, the depth of the navigation, and
the site to which the user went afterwards. With the avail-
ability of numerous tracking provides, operators do not
have to implement their own service, it suffices to in-
clude a third-party script on the pages to analyze. Since
the amount of sharing is directly proportional to the pop-
ularity of a tracking service, an attacker merely needs to
pick the most popular tracker to achieve high attack cov-
erage.

[# Unique Referrers [URL

3833 b.scorecardresearch.com/beacon. js

3700 rmd.atdmt.com/tl/DocumentDotWrite. js

3368 edge.quantserve.com/quant. js

3096 pagead2.googlesyndication.com/pagead/show_ads. js

3019 s0.2mdn.net/879366/flashwrite_1_2.7s

2430 googleads.g.doubleclick.net/pagead/test_domain. js

2415 static.ak.connect.facebook.com/connect.php/en_US/Jjs/Api/CanvasUtil/Connect/XFBML
2339 pagead2.googlesyndication.com/pagead/js/graphics. js
2334 static.ak.fbcdn.net/rsrc.php/z49PH/hash/9p47jvzp. Js
2284 upload.wikimedia.org/centralnotice/wikipedia/en/centralnotice.js?270z54
2266 www.google—analytics.com/ga. js

453 pagead2.googlesyndication.com/pagead/show_ads. js

359 pagead2.googlesyndication.com/pagead/sma8. js

358 www.google—-analytics.com/ga. js

310 pagead2.googlesyndication.com/pagead/js/graphics. js

304 pagead2.googlesyndication.com/pagead/expansion_embed. js
290 googleads.g.doubleclick.net/pagead/test_domain. js

287 pagead2.googlesyndication.com/pagead/js/abg. js

255 edge.quantserve.com/quant. js

228 rmd.atdmt.com/tl/DocumentDotWrite. js

227 s0.2mdn.net/879366/flashwrite_1_2.7s

42 adserver.itsfogo.com/default.aspx?t=f&v=1&zoneid=40761

Table 3: The top 10 cacheable JavaScript objects sorted by their unique referrer count. The upper half of the table

corresponds to LBNL and the lower half to AirJaldi.

According to BuiltWith [2], Google Analytics has
the largest market share in the space of tracking ser-
vices (56.41 %), followed by Omniture SiteCatalyst [4]
(14.08 %), and Quantcast Tracking [5] (12.21 %), as of
May 2010. Others report Google Analytics to be used
by approximately 32.2% of the Alexa’s list of the 10,000
most popular web sites [12], and we find that Google An-
alytics is used on 14 % of all visited sites (see §3.4).

Ad networks and market research firms use similar
techniques to tailor their advertisements to the user. We
find that the majority of shared JavaScript stems from ad
networks, as shown in Table 3.

4.2 JavaScript CDNs

JavaScript content distribution networks (CDNs) provide
a resilient hosting infrastructure for popular, open source
JavaScript libraries used by a large number of sites. This
service is attractive to content providers who make use
of JavaScript to yield improved performance and avail-
ability, while reducing their own bandwidth at the same
time.

For example, the Google AJAX libraries [7] use a sin-
gle shared loader script that enables access to 10 such
libraries. An attack that poisons the loader automati-
cally gains cross-site scripting (XSS) capabilities on each
site that uses any of the provided libraries by the Google
CDN. 2 Alternatively, the attacker could inject links to

2Although the loader itself not cacheable, the attacker will add the
necessary headers to keep it in the cache until the next validation oc-
curs.

all 10 JavaScript libraries hosted on the CDN to trigger
a request from the victim and then reply with a modified
version. This is a very lucrative vector since all libraries
have an expiration of one year.

4.3 Cellular carriers

With the argument to save bandwidth and client-side re-
sources, some carriers transparently compress requested
content or reduce the quality of images when accessing
the Internet via their cellular data networks. For ex-
ample, we tested the 3G network of T-Mobile and find
that image and video links are rewritten to be fetched
through a proxy. Some carriers go even further and in-
ject a piece of JavaScript on every page that a user vis-
its [18, 6, 8, 21]. AT&T for instance injects the script
http://2.2.3.4/bmi-int-js/bmi. js, which
installs custom keyboard shortcuts to allow for image
quality adjustment and changes page element titles. Not
only does this break pages that use these keyboard short-
cuts, but this particular script presents a perfect target for
a persistent cache poisoning attack. An attacker who in-
jects a malicious version of the script can execute code
on every accessed page while the victim uses the cellular
data network.

Note that the attacker does not have to be on the cel-
lular 3G network to attack the user. In the coffeshop
scenario, it suffices to inject the link to bmi . js on an
arbitrary website and then respond to the provoked re-
quest. If the victim switches to a 3G network in some
point in the future, the infection already took place and

the attacker’s code executes on each page.

5 Countermeasures

The presented attack exploits the lack of integrity in the
HTTP protocol coupled with the relaxed cache valida-
tion practices. Although the use of HTTPS solves the
problem by eradicating the man-in-the-middle (MITM)
attack vector, the site provider has to offer this option in
the first place. Nonetheless, there exist mitigations for
this attack which we outline below.

5.1 Disabling the Cache

The simplest solution is to disable the browser cache
entirely. But since intermediate proxies may still have
a poisoned entry the browser, the user must addition-
ally make sure to bypass them and always request the
object from the origin server. Each request must then
contain a Cache—-Control or Pragma header set to
no-cache.

Although disabling the browser cache is the safest so-
lution, it prevents from accessing any of the benefits of
caching. The penalty is particularly severe when (i) per-
formance and responsiveness are important, (ii) access-
ing large objects such as videos, (iii) bandwidth is a
scarce or expensive resource, or (iv) only intermittent
connectivity is available.

5.2 Frequent Cache Clearing

To minimize the time that malicious content stays in the
browser cache, another strategy is to frequently clear the
cache. One practical model that balances the benefits of
caching with the potential for maliciously cached objects
would be to automatically purge the cache when the ex-
ternal IP address of the machine changes. The rationale
behind this strategy is that a present network attacker can
always inject content, so the client is hosed anyway for
the time sharing the network with the attacker. However,
when the client later joins a different network, clearing
the cache would get rid off all the accumulated badness.

One minor problem is that, due to the prevalence of
NATs and private address spaces, a client which moves
networks might not necessarily change IP addresses.
Thus a client would benefit from using an external ser-
vice which reported its externally visible IP to determine
when its address changes.

5.3 Improving Validation

Although the attacker controls the object expiration, sce-
narios still exist that trigger premature validation, offer-
ing an opportunity for disinfection by retrieving the cur-

rent object from the server (see §3.2). But since the val-
idator is opaque (i.e., the client does not recompute it
locally), the attack persistence is a function of the ob-
ject lifetime. Instead, it already would be an advantage
if we could ensure that the validation fails for corrupted
objects. HTTP has a potential mechanism which would
enable client-side validation, but it requires server-side
changes. The HTTP header ETag is defined as a
unique opaque identifier which the server can use to val-
idate whether the client has up-to-date content. Unfor-
tunately, server implementers have historically chosen
very poor validators. For example, Apache uses file size,
MIME type, and inode number to create the ETag. Nei-
ther the client nor the servers in a cluster can recreate the
ETag.

The proper solution is for validators to be a crypto-
graphic hash of the file contents, as validators must be
cryptographically secure and calculateble on both the
client and server. A simple solution would be to make
the ETag non-opaque if it begins with the string “SHA-
256:,” which would allow the client to properly deter-
mine that this ETag represents a cryptographic hash, and
that it should validate that the hash in the ETag matches
the received contents before placing it in the cache.

Although there is no cryptographic protection for the
downloaded object, the hash does protect the cache on
subsequent validations. If the attacker does not create a
proper hash ETag, the object will not be cached. If the
attacker forges an ETag, the content will be fixed when
the victim’s browser validates the contents.

An additional advantage of shifting to hash-based val-
idators is that it makes CDN and cluster deployments
work properly.

5.4 Cache Partitioning

Another solution is to implement the browser cache on
a per-site granularity. Jackson et al. [14] frame the ex-
istence of a shared browser cache as lack of per-site
cache isolation, with the argument that the browser does
not apply the same-origin policy consistently when writ-
ing to and reading from the cache. For example, when
cacheable third-party content hosted by a server S is in-
cluded in site A, the browser does not restrict the cached
content to be used only by A, but instead allows another
site B that includes the same third-party content via S,
to use the cached copy that has been previously cached
in the context of A.

To prevent cache content content from being used
across domains, the authors propose partitioning the
cache based on the embedding context. That is, the third-
party content in the above example hosted by .S should be
cached for A and B separately, such that the pairs (A, S)

and (B, S) represent two disjoint caches.?

Although cache partitioning reduces the attack cover-
age, it does not solve the underlying problem, and suf-
fers from the same problems arising from disabling the
cache (see §5.1).

6 Related Work

We are not the first to find that the lack of integrity in the
HTTP protocol in combination with its caching behav-
ior opens a dangerous attack vector. Similar ideas have
been summarized mostly by the penetration testing com-
munity and independent activists [20, 15]. However, we
are the first to frame this threat in an academic context
and quantify its impact.

In previous work on HTTP caching, Mogul et al. de-
veloped a scheme to detect duplicate message bod-
ies [17]. Barford et al. studied the effect of request dis-
tribution patterns and their caching implications [9], and
Doyle et al. explored the effect of ubiquitous caching on
request patterns [11]. Our research differs in that we par-
ticularly focus on the security implications, rather than
studying the caching phenomenon itself.

The occurrence of Zipf-like distributions in web traffic
is well-known [10, 22, 11]. Our research is novel in its
use of the number of unique referrers as a proxy for the
popularity and degree of sharing of an object.

7 Conclusion

The browser’s object cache exists primarily for perfor-
mance reasons: clients can avoid unnecessary requests
and increase their responsiveness, while servers can re-
duce their used bandwidth and I/O load. In the current
HTTP protocol, the server is the only entity perform-
ing integrity checks, opening the opportunity for an at-
tacker to change the object’s content and expiration with-
out causing later validation checks to fail.

While we demonstrated the ease at which this can be
conducted in our previous project, this project focuses on
the evaluation of the magnitude of this threat.

With data from two very distinct environments, we es-
timate object lifetimes and find that the median lifetime
varies between two months and one year, enabling long-
lived persistent attacks. This is exacerbated by the high
degree of sharing that objects exhibit, which invites to
poison a few high-profile target to achieve high attack
coverage.

Current mitigation techniques are insufficient. The
best advice we can give is to use an encrypted HTTPS

3The authors implement this policy as an extension for the Firefox
browser called SafeCache [19]. Unfortunately, our attempts to test the
extension failed due to incompatibility with the most recent version of
Firefox.

session when possible. We hope this analysis raises
awareness for this latent threat and stimulates future re-
search in this area.

Acknowledgements

We would like to thank Devdatta Akhawe for the inspir-
ing discussions about potential attack targets and Robin
Sommer for his invaluable feedback on the evaluation.
Our gratitude extends to Nicholas Weaver for his com-
ments on the countermeasures and Rohan Gupta for his
thoughts on the browser validation behavior.

References

[1] AirJaldi. http://www.airjaldi.orgq.

[2] BuiltWith Technology Usage Statistics. http://
trends.builtwith.com.

[3] Getting started: Keyboard and mouse short-
cuts. http://www.google.com/support/
chrome/bin/answer.py?answer=95743.

[4] Omniture SiteCatalyst. http://www.
omniture.com/en/products/online_
analytics/sitecatalyst.

[5] quantcast. http://www.quantcast .com.

[6] Bmijs. http://blog.zoiah.net/?p=14,
January 2009.

[7] Google ajax libraries api. http://code.
google.com/apis/ajaxlibs/, May 2010.

[8] Jon Atkinson. http://1.2.3.8/bmi-int-
js/bmi.js. http://jonatkinson.co.
uk/httpl238bmi-int-jsbmijs, 12 2007.

[9] Paul Barford, Azer Bestavros, Adam Bradley, and
Mark Crovella. Changes in Web client access

patterns: Characteristics and caching implications.
World Wide Web, 2(1-2):15-28, 1999.

[10] Lee Breslau, Pei Cue, Pei Cao, Li Fan, Graham
Phillips, and Scott Shenker. Web Caching and Zipf-
like Distributions: Evidence and Implications. In In
IEEE INFOCOM, pages 126—134, 1999.

[11] Ronald P. Doyle, Jeffrey S. Chase, Syam Gadde,
and Amin Vahdat. The Trickle-Down Effect: Web
Caching and Server Request Distribution. Com-
puter Communications, 25(4):345-356, 2002.

[12] The Biggest Google Analytics Sites.
http://www.backendbattles.com/

backend/Google_Analytics.

[13] HTTP/1.1: Caching in HTTP. http:
//www.w3.0rg/Protocols/rfc2616/
rfc26l6-secl3.html.

[14] Collin Jackson, Andrew Bortz, Dan Boneh, and
John C. Mitchell. Protecting Browser State from
Web Privacy Attacks. In Proceedings of the 15th In-
ternational Conference on World Wide Web, WWW

’06, pages 737744, 2006.

[15] Mike Kershaw. Wifi Security —or— Descending Into
Depression and Drink. BlackHat DC, Arlington,

VA, USA, 2010.

[16] Lawrence Berkeley National Laboratory. http:

//www.1lbl.gov.

[17] Jeffery C. Mogul, Yee Man Chan, and Terence
Kelly. Design, Implementation, and Evaluation
of Duplicate Transfer Detection in HTTP. In
NSDI'04: Proceedings of the Ist conference on
Symposium on Networked Systems Design and Im-
plementation, pages 4-4, Berkeley, CA, USA,

2004. USENIX Association.

[18] RSnake. AT&T UTMS JS Injection.
http://ha.ckers.org/blog/20100412/

att-evdo-js—-injection, April 2010.

Stanford SafeCache.
safecache.com.

[19] http://www.

[20] Roi Saltzman and Adi Sharabani. Active Man in
the Middle Attacks. Technical report, IBM Rational

Application Security Group, February 2009.

[21] Howie Weiner. Tethering the iPhone : My Experi-
ence plus 02’s secret little bmi.js file. http://

www.badlydrawntoy.com/2009/08/07/

B Lifetime Estimation

Using the observed truncated lifetime as an estimate for
the object lifetime is simple, but could be improved by a
more rigorous mathematical model. In future work, we
plan to recast this estimation problem in the framework
of stochastic processes.

For a given object, consider a homogeneous Pois-
son process with rate A and define W; to be a random
variables representing the i*” modification time and set
Wo = 0. Further, define L; = W;1; — W; to be the
time between two consecutive modifications. Then, the
lifetime of the object is given by the set

1
L; ~ Exp <>\>

and A = 1/X,, being the MLE for \. There are some
complications that make the application of this frame-
work a little more complicated. First, with our short mea-
surement window, we cannot observe more than one L;
sample per object. Second, we can only observe a trun-
cated version of this lifetime sample, because our mea-
surement window is placed randomly in the Poisson pro-
cess.

where

tethering-the-iphone-my-experience-plus-o2s-secret-little-bmi-js-file,

August 2009.

[22] Alec Wolman, M. Voelker, Nitin Sharma, Neal
Cardwell, Anna Karlin, and Henry M. Levy. On the
scale and performance of cooperative Web proxy
caching. In SOSP ’99: Proceedings of the seven-
teenth ACM symposium on Operating systems prin-
ciples, pages 16-31, New York, NY, USA, 1999.

ACM.

A Determining Cacheability

Determining whether an object is cacheable and extract-
ing the expiration is not a straight-forward undertaking,
because various headers have an effect on cacheability.
The algorithm we use to gauge the expiration of an ob-
ject is shown in Figure 6.

10

Determine whether a HTTP response 1s cacheable. The parameter date and expires
must be in epoch seconds. Return the expiration time or -1 if the document 1is
not cacheable.
function cacheable (cache_control, pragma, date, expires, last_modified, etag)
{
if (cache_control ~ /no-cache/ || pragma ~ /no-cache/)
return -1

if (cache_control =~ /max-age/)
{
m = split (cache_control, directives, ",")
for (i = 1; 1 <= m; 1i++)
{
if (directives[i] ~ /max-age/)
{
n = split(directives([i], kv, "=")
maxage = int (kv[2])

The last character in the max-age value could be alphabetic.
Because this extension 1is not treated in the standard, we

avoid the ambiguous ’m’ character entirely (and underestimate
the expiration).

last = substr(kv[2], length (kv[2]), 1)

if (last = /" [hdwyl$/)

{

if (last == "h")
maxage x= 3600
else if (last == "d")
maxage *= 86400
else if (last == "w")
maxage x= 604800
else if (last == "y")

maxage %= 31536000

if (maxage >= 0)
return maxage
else
break

Gauge expiration time based on Date and Expires header.
if (date > 0 && expires > 0)
{
delta = expires - date
if (delta > 0)
return delta

At this point, a strong validator implies 0 expiration because the
document is checked each time. Unless it changes, the server returns a
304. Further, according to 13.3.4 in the HTTP spec, if we have only a
Last-Modified header, the origin server "SHOULD use that value in
non-subrange cache-conditional requests (using If-Modified-Since)". This
means the document has zero expiration, but is cacheable in principle.
if (etag != "" || last_modified > 0)
return 0

Not cacheable.
return -1

Figure 6: Determining the expiration time of an object implemented in Awk.

11

