
Matthias Vallentin
vallentin@icsi.berkeley.edu

Intrusion Detection
and the Bro NIDS

http://matthias.vallentin.cc
http://matthias.vallentin.cc
mailto:vallentin@icsi.berkeley.edu
mailto:vallentin@icsi.berkeley.edu

Acknowledgements

Slides mixed from my ICSI / ICIR fellows

Kudos to you, guys!

Robin Sommer
http://www.icir.org/robin

Christian Kreibich
http://www.icir.org/christian

http://www.icir.org/robin
http://www.icir.org/robin
http://www.icir.org/robin
http://www.icir.org/robin
http://www.icir.org/christian
http://www.icir.org/christian
http://www.icir.org/christian
http://www.icir.org/christian

Outline

Intrusion Detection 101

The Bro NIDS

Port-independent Protocol Analysis

Parallel Intrusion Detection

Demo

Intrusion Detection 101

Detection vs. Prevention

Intrusion Detection

passive

unobtrusive

Intrusion Prevention

inline

critical

Deployment

Host-based
Scope: single machine

Anti-{Virus, Rootkit, Phishing}

+ Access to system resources (memory, disk, periphals)
- Expensive analysis decreases system performance
Network-based

Scope: link-layer visibility
+ Analysis can incorporate data from multiple sources
- Threats do not only come from the network

Detection Strategies

Three analysis models

Misuse Detection

Anomaly Detection

Specification-based Detection

Detection Strategies (cont’d)

Misuse Detection

Recognizes known attacks (pattern matching, blacklists)

+ Good attack libraries
+ Easy to understand results
- Unable to detect new attacks or variants

Detection Strategies (cont’d)

Anomaly Detection

Deviation from expected behavior raises an alert

+ Detects wide range of attacks, include novel
- High false positive rate
- Effectiveness depends on preliminary training

Detection Strategies (cont’d)

Specification-based Detection

Codifies allowed behavior in policies (whitelists)

+ Detects wide range of attacks, including novel
+ Can accommodate signatures and anomalies
+ Directly supports implementing a site’s policy
- Policies require significant development & maintanance
- Attack libraries difficult to construct

Trade-Offs and Limitations

Cost ↔ Benefit

False positives ↔ False negatives

Stateful ↔ Stateless

Evasion: attacks directed at the system itself

Evalution: synthetic data ↔ real-world data

Scalability: more traffic, more diversity

The Bro NIDS

System Philosophy

Developed at ICSI & LBNL since 1996

Real-time network analysis framework

Primary a network intrusion detection system (NIDS)

However it is also used for pure traffic analysis

Focus on application-level semantic analysis (rather than
analyzing individual packets)

Strong separation of mechanism and policy

System Philosophy

Strong separation of mechanism and policy

Policy-neutral core (no notion of “good” or “bad”)

Not restricted to a particular detection strategy

Typical: misuse detection

Operators program their policy

System Philosophy (cont’d)

Focus is not signature matching (like Snort)

Focus is not anomaly detection

But scripting language allows to program in this model

Thorough activity logging

Not just alerts

Policy-neutral logs are invaluable for forensics

Target Environments

Bro is specifically well-suited for scientific environments

Extremely useful in networks with liberal (“default allow”)
policies

Supports intrusion prevention schemes

High-performance on commodity hardware

Runs on Unix-based systems (e.g., Linux, FreeBSD,
MacOS)

Open-source (BSD license)

Target Environments (cont’d)

Bro requires some effort to use it effectively

Pretty complex, script-based system

Requires understanding of the network

No GUI, just ASCII logs

Only partially documented

Development is primarily driven by research

However, focus on operational use

Bro Deployment

Bro is typically deployed at a site’s upstream link

Monitors all external incoming or outgoing packets

Deployment similar to other NIDS

By default, purely passive monitoring

Internet
Internal
Network

Bro

Tap

Architecture

Network

Packet Stream

Event Engine (Core)

Event Stream

Policy Script Interpreter

Real-time Notification

Event Model - Example
Request for /index.html

Status OK plus data 5.6.7.8/80

Web
Server

Web
Client

1.2.3.4/4321

connection_established(1.2.3.4/4321→5.6.7.8/80)Event

TCP stream reassembly for originator

http_request(1.2.3.4/4321→5.6.7.8/80, “GET”, “/index.html”)Event

TCP stream reassembly for responder

http_reply(1.2.3.4/4321→5.6.7.8/80, 200, “OK”, data)Event

connection_finished(1.2.3.4/4321, 5.6.7.8/80)
Event

......SYN SYN ACK ACK ACK ACK FIN FIN Stream of TCP packets

Event Engine

Performs policy-neutral analysis

Turns low-level activity into high-level events

Examples: connection_established, http_request

Events are annotated with context (e.g., IP addresses, URL)

Event-engine is written in C++ for performance

Performs work per packet

Event Engine (cont’d)

Contains analyzers for >30 protocols, including

ARP, IP, ICMP, TCP, UDP

BitTorrent, DCE-RPC, DNS, FTP, Finger, Gnutella, HTTP,
IRC, Ident, NCP, NFS, NTP, NetBIOS, NetFlow, POP3,
Portmapper, RPC, Rsh, Rlogin, SMB, SMTP, SSH, SSL,
SunRPC, Telnet, XML w/ XQuery

Analyzers generate ~300 types of events

Expressing Policy with
Scripts

Scripts are written in a domain-specific language

Bro ships with 20K+ lines of script code

Default scripts detect attacks & log activity extensively

Scripts take actions

Generate alerts via syslog or mail

Execute program as a reactive form of response

Record activity to disk

Bro’s Scripting Language

Bro’s scripting language is

Procedural

Event-based

Strongly typed

Rich in types (tables/sets, address, port, subnet, ...)

State management (persistence, expiration, timers, ...)

Supporting communication with other Bro instances

Script Example:
Matching URLs

Code simplified. See policy/http-request.bro.

event http_request(c: connection, method: string, path: string)
{
 if (method == “GET” && path == “/etc/passwd”)
 NOTICE(SensitiveURL, c, path);
}

Script Example:
Tracking SSH Hosts

global ssh_hosts: set[addr];

event connection_established(c: connection)
{
 local responder = cidresp_h; # Responder’s address
 local service = cidresp_p; # Responder’s port

 if (service != 22/tcp)
 return; # Not SSH.

 if (responder in ssh_hosts)
 return; # We already know this one.

 add ssh_hosts[responder]; # Found a new host.
 print "New SSH host found", responder;
}

Policy-neutral Logging

Bro’s default scripts perform two main tasks

Detecting malicious activity (mostly misuse-detection)

Logging activity comprehensively without any actual
assessment

In practice, policy-neutral logs are often most useful

Form of new attacks typically unknown

Detailed information highly useful when incidents happen

Example Log: HTTP Session
1144876588.30 start 192.150.186.169:53041 > 195.71.11.67:80
1144876588.30 GET /index.html (200 "OK" [57634] www.spiegel.de)
1144876588.30 > HOST: www.spiegel.de
1144876588.30 > USER-AGENT: Mozilla/5.0 (Macintosh; PPC Mac OS ...
1144876588.30 > ACCEPT: text/xml,application/xml,application/xhtml ...
1144876588.30 > ACCEPT-LANGUAGE: en-us,en;q=0.7,de;q=0.3
[...]
1144876588.77 < SERVER: Apache/1.3.26 (Unix) mod_fastcgi/2.2.12
1144876588.77 < CACHE-CONTROL: max-age=120
1144876588.77 < EXPIRES: Wed, 12 Apr 2006 21:18:28 GMT
[...]
1144876588.77 <= 1500 bytes: "<!-- Vignette StoryServer 5.0 Wed Apr..."
1144876588.78 <= 1500 bytes: "r "http://spiegel.ivwbox.de" r..."
1144876588.78 <= 1500 bytes: "icon.ico" type="image/ico">^M^J ..."
1144876588.94 <= 1500 bytes: "erver 5.0 Mon Mar 27 15:56:55 ..."
[...]

http://www.spiegel.de
http://www.spiegel.de
http://www.spiegel.de
http://www.spiegel.de
http://spiegel.ivwbox.de
http://spiegel.ivwbox.de

Port-independent Protocol
Analysis
with Dynamic Protocol Detection (DPD)

Shortcut

Port-based Analysis	

Bro has lots of application-layer analyzers

But which protocol does a connection use?

Traditionally NIDS rely on ports

Port 80? Oh, that’s HTTP.

Port-based Analysis
 (cont’d)

Obviously deficient in two ways

There’s non-HTTP traffic on port 80 (firewalls tend to open
this port...)

There’s HTTP on ports other than port 80

Particularly problematic for security monitoring

Want to know if somebody avoids the well-known port

Port-independent Analysis

Look at the payload to see what is, e.g., HTTP

Analyzers already know how a protocol looks like

Leverage existing protocol analyzers

Let each analyzer try to parse the payload

Ideal setting: for every connection, try all analyzers

Performance penalty: can’t parse 10 000s of
connections in parallel with all analyzers enabled

Making it realistic ...	

Bro uses byte patterns to prefilter connections

An HTTP signature looks for potential uses of HTTP

HTTP analyzer then verifies by trying to parse the payload

Signatures can be loose because false positives are
inexpensive (no alerts!)

Making it realistic ...	

Other NIDS often ship with protocol signatures

These directly generate alerts (imagine reporting all non-80
HTTP conns!)

These do not trigger protocol-layer semantic analysis (e.g.,
extracting URLs)

In Bro, a match triggers further analysis

Main internal concept: analyzer trees

Each connection is associated with an analyzer tree

Example: Analyzer Tree

A connection looks like mail, but what is it?

IP TCP SMTP

IMAP

POP3

Interact.

Application Example: FTP
Data

FTP data sessions can’t be analyzed by port-based
NIDSs

Bro’s DPD has a notion of “expected connections”

Can be told in advance which analyzer to use for an
upcoming connection

Bro also has a File Analyzer

Determines file-type (via libmagic)

Application Example: FTP
Data (cont’d)
xxx.xxx.xxx.xxx/2373 > xxx.xxx.xxx.xxx/5560 start
response (220 Rooted Moron Version 1.00 4 WinSock
ready...)
USER ops (logged in)
SYST (215 UNIX Type: L8)
[...]
LIST -al (complete)
TYPE I (ok)
SIZE stargate.atl.s02e18.hdtv.xvid-tvd.avi (unavail)
PORT xxx,xxx,xxx,xxx,xxx,xxx (ok)
STOR stargate.atl.s02e18.hdtv.xvid-tvd.avi, NOOP (ok)
ftp-data video/x-msvideo `RIFF (little-endian) data,
AVI'
[...]
response (226 Transfer complete.)
[...]
QUIT (closed)

Application Example:
Finding Bots

IRC-based bots are a prevalent problem

Infected client machines accept commands from their
“master”

Often IRC-based, but not on port 6667

Just detecting IRC connections not sufficient

Often there is legitimate IRC on ports other than 6667

Application Example:
Finding Bots

DPD allows to analyze all IRC sessions semantically

Looks for typical patterns in NICK and TOPIC

Reports if it finds IRC sessions showing both such NICKs
and TOPICs

Very reliable detection of bots

Munich universities use it to actively block internal bots
automatically

Application Example:
Finding Bots (cont’d)

Detected bot-servers:
IP1 - ports 9009,6556,5552 password(s) <none> last 18:01:56
 channel #vec:
 topic ".asc pnp 30 5 999 -b -s|.wksescan 10 5 999 -b -s|[...]"
 channel #hv:
 topic ".update http://XXX/image1.pif f"
[...]
Detected bots:
IP2 - server IP1 usr 2K-8006 nick [P00|DEU|59228]
IP4 - server IP1 usr XP-3883 nick [P00|DEU|88820]
[...]

http://XXX/image1.pif
http://XXX/image1.pif

DPD: Summary

Port-independent protocol analysis

Idea is straight-forward, but Bro is the only system which
does it

Bro now has a very generic analyzer framework

Allows arbitrary changes to analyzer setup during lifetime of
connection

Is not restricted to any particular approach for protocol
detection

DPD: Outlook

Main performance impact: need to examine all packets

Well, that’s pretty hard to avoid

Potential extensions

More protocol-detection heuristics (e.g., statistical
approaches)

Analyze tunnels by pipelining analyzers (e.g., to look inside
SSL)

Hardware support for pre-filtering (e.g., on-NIC filtering)

Parallel Network Intrusion
Detection

Problem

NIDSs reached their limits on commodity hardware

Need to do more analysis on more data at higher speeds

However, CPU performance is not growing anymore the
way it used to

Single NIDS instance (e.g., Snort, Bro) cannot cope with
Gbps links

Motivation

To overcome, we must either

Restrict the amount of analysis

Turn to expensive, custom hardware

Employ parallelization of the processing across

Machines

CPUs

Orthogonal Approaches

The NIDS Cluster

Many PCs instead of one

Communication and
central user interface
creates the impression of
one system

First installations up and
running

Parallel operation within
a single NIDS instance

In software: multi-
threaded analysis on
multi-core systems

In hardware: compile
analysis into a parallel
execution model (e.g., on
FPGAs)

The NIDS Cluster

Overview

We do load-balancing with the “NIDS Cluster”

Use many boxes instead of one

Every box works on a slice of traffic

Correlate analysis to create the impression of a single
system

Traditional Approach

Most NIDS provide support for multi-system setups

However, instances tend to work independently

Central manager collects alerts of independent NIDS
instances

Aggregates results instead of correlating analysis

Our Approach

Our NIDS cluster works transparently like a single
NIDS

Gives same results as single NIDS would if it could analyze
all traffic

Does not sacrifice detection accuracy

Scalable to large number of nodes

Still provides a single system as the user interface

logging, configuration updates

NIDS Cluster

Architecture

Frontend Frontend

Proxy
Proxy

Backend BackendBackend
Backend BackendBackend

Backend BackendBackend
Backend BackendBackend

Internet Local

Gbps

Gbps

Manager

Tap

Tap

Environments

Initial target environment:
Lawrence Berkeley National Laboratory (LBNL)

LBNL monitors 10 Gbps upstream link with the Bro NIDS

Setup evolved into many boxes running Bro independently
for sub-tasks

Cluster prototype now running at LBNL

1 frontend and 10 backends

Environments (cont’d)

Further prototypes

University of California, Berkeley
2 x 1 Gbps uplink, 2 frontends / 6 backends for 50% of the
traffic

Ohio State University
450 Mbps uplink, 1 frontend / 12 backends

IEEE Supercomputing Conference 2007
Conference’s 1 Gbps backbone / 10 Gbps “High Speed
Bandwidth Challenge” network

Goal: Replace operational security monitoring

Challenges

Main challenges when building the NIDS Cluster

Distributing the traffic evenly while minimizing need for
communication

Adapting the NIDS operation on the backend to correlate
analysis with peers

Validating that the cluster produces sound results

Summary

Summary

Bro is one of the most powerful NIDS available

Open-source and runs on commodity hardware

While primarily a research system, it is well suited for
operational use

Deployed at large universities and labs

Current Work

Interactive Cluster Shell for easy installation/operation
of a Bro Cluster

Time Machine interface

see http://www.net.t-labs.tu-berlin.de/research/tm

Turning cluster prototype into production

Multi-core support

Inter-site data sharing

http://www.net.t-labs.tu-berlin.de/research/tm
http://www.net.t-labs.tu-berlin.de/research/tm

Cluster Shell

Matthias Vallentin
vallentin@icsi.berkeley.edu

FIN

http://matthias.vallentin.cc
http://matthias.vallentin.cc
mailto:vallentin@icsi.berkeley.edu
mailto:vallentin@icsi.berkeley.edu

