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Caching forms an integral part of the Internet to avoid duplicate object transfers and save

bandwidth. However, little research went into the study of caching from the network perspec-

tive. We explore this path by studying the modification process of web objects which can be

observed indirectly via meta data in downloads. Our model based on renewal processes cap-

tures these interactions and we derive the maximum likelihood estimator. To test our model,

we group similar objects using a mixture model. Moreover, we analyze the modification pro-

cess of individual objects using spectral analysis of the lifetimes and compare different object

spectra. This project is a first step in tackling a specific aspect of the generally complex and

messy nature of network traffic data and thus requires further efforts to achieve profound

results.

1. Introduction

The ongoing trend towards faster, richer, and more sophisticated web applications makes caching

an indispensable component of fulfilling the user’s expectations for responsiveness. The purpose of

browser cache is to store web content for performance reasons in order to both reduce the server

load and avoid unnecessary requests for an unchanged object. To this end, the HTTP protocol

defines a variety of caching parameters [4] that control object expiration and validation.
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In this paper we study object caching from a network perspective. Previous research investigated

caching from different vantage points, in particular caches at the endpoints and intermediate points

in the network. For example, Mogul et al. developed a scheme to detect duplicate HTTP message

bodies [6], Barford et al. studied the effect of request distribution patterns and their caching

implications [2], and Doyle et al. explored the effect of ubiquitous caching on request patterns [3].

However, our approach is different in that it is completely passive, i.e., solely based on observing

network traffic. To the best of our knowledge, this approach has not yet been explored in the past.

Analyzing caching from the network perspective has both advantages and disadvantages. On

the one hand, monitoring network of a large site traffic at a central location yields a cross-section

of a various different objects that are being transferred. On the other hand, when an object can

be retrieved from a cache rather than from its original source (i.e., a cache hit) downstream of

the vantage point, it will not show up in our data. Consequently, our observations are confined to

cache misses. This is a study of rare events: cacheable objects do not show up frequently in the

traffic but these are the ones we want to study.

More concretely, this research sets out to infer the modification process of cacheable HTTP

objects, whose times of modification are indirectly available as meta data in each object download.

We develop a stochastic model to describe this point process and try to understand our data by

carrying out both time and frequency domain analysis methods.

The paper is structured as follows: after familiarizing the reader with the relevant aspects of

HTTP caching in §2, we introduce our data in §3. Next we describe our model in §4 and link it to

the data in §5. Finally, we give concluding remarks and ideas for future work in §6.

2. HTTP caching

Caching in HTTP [4] is based on two principal mechanisms, expiration and validation. To allow

clients to verify the freshness of an object, the server specifies its expiration, using either the
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Environment Start End Length HTTP connections

LBNL 4/21/2010 12:05pm 4/23/2010 12:34pm 48 hours 22,200,000
AirJaldi 10/18/2010 5:16pm 11/9/2010 10:30am 21 days 30,200,000

Table 1: Summary of the two data sets from the Lawrence Berkeley National Laboratory and
AirJaldi.

Expires header1 or the max-age directive in the Cache-Control header. A fresh object at the

client does not need to be refetched, thereby avoiding unnecessary requests entirely. An expired

object must be validated by asking the origin server (i.e., not an intermediate cache) if the local

copy can still be used. The Expires header contains an absolute date time stamp, but when we

refer to expiration time, we mean the absolute expiration value minus the time when the object

was downloaded.

3. Data

This section introduces our data sets. In §3.1 we present the two environments from where we

obtained the data and §3.2 we describe the process of how we filter, clean, and extract the relevant

pieces of information of the data.

3.1. Environments

Our data set consists of processed network traffic using the Bro network intrusion detection sys-

tem [7] from contrasting environments: a large research institute in California, USA, and a rural

community in the Indian Himalayas. The high-level details of our data are summarized in Table 1.

The first environment is the Lawrence Berkeley National Laboratory (LBNL, [5]), which is the

oldest of the U.S. Department of Energy’s national laboratories and managed by the University of

California, Berkeley. Its approximately 4,000 users and 13,000 hosts are connected to the Internet

via a 10 Gbps uplink. We captured a 48-hour packet trace with a HTTP filter from April 21 to

1The HTTP protocols splits requests and responses in header (meta data) and body (data).
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April 23 with 22.2 million connections.

The second environment is the AirJaldi [1] rural wireless network serving mostly the Tibetan

community-in-exile. The network comprises about 8,000 users and has an uplink totaling 10 Mbps.

We processed HTTP traffic for 21 days from October 18 to November 9 with 30 million connections.

3.2. Inspection

We restrict our analysis to HTTP objects that can contain executable code, which are mainly

HTML and JavaScript. These object types are particularly interesting because they contain the

structure and logic of most of web sites. Furthermore, this study is about understanding objects

that are cacheable and henceforth we solely focus on those. In both environments, images ac-

count for the largest share of cacheable objects, cacheable HTML and JavaScript only account for

5.27 / 2.94 % and 4.06 / 3.67 % respectively for LBNL/AirJaldi.

4. Model

In this section we develop a stochastic model that formalizes interactions between downloads and

object modification times. In §4.1 we present our point process model, followed by a maximum

likelihood analysis in §4.2 and a simple instantiation in §4.3

4.1. Stochastic Process

We model object lifetimes as a renewal process {Lt : t ∈ T}, i.e., a set of independent, identically

distributed (iid) positive random variables (rv’s) each of which represents the lifetime of an object

until its next modification. T ⊆ N is an index set to label the rv’s. The random times at which

a modification occurs form the point process {Mt : t ∈ T}. Hence, their pairwise differences

Lt , Mt+1 −Mt form the lifetime of a particular object version. This process ranges from the

birth of an object at time M0 until its destruction. An illustration is visualizes these processes in
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Mt Mt+1 Mt+2 Mt+3

wD1 Dj DK

BM(Dj) FM(Dj)

Lt Lt+1 Z

Lt+2

Figure 1: An illustration of our model. Object download times are denoted by Dj where 1 ≤ j ≤ K
and their modification times by Mt. Each object version t has a lifetime Lt. During the
observed modifications in the measurement window w, there exists at least one censored
lifetime Lt+n which we denote by Z. The backward recurrence time BM(Dj) is the time
elapsed since the last modification at the time of download j and the forward recurrence
time FM(Dj) the time to the next modification of M .

Figure 1.

Downloads in our data sets correspond to the times where we can observe the otherwise hidden

process Mt. This is because each download includes the Last-Modified header that reveals the

last Mt value. Technically, the downloads also form a stochastic process {Dj : j ∈ N}, but we

consider them as fixed for now. In future work plan to extend this model to double stochastic

processes.

Let w = DK − D1 denote the discrete measurement window with K downloads of the same

object in which we observe n− 1 object modifications with corresponding lifetimes Lt+n−1, where

K > n. The last modification lies outside w and the corresponding lifetime Lt+n is thus always

censored, i.e., truncated at DK .

The backward recurrence time and forward recurrence time

BM(s) , s−Mt Mt ≤ s < Mt+1

FM(s) ,Mt+1 − s Mt < s ≤Mt+1

relate Mt and Dj. The index M of B and F denotes the process being referred to. The last lifetime
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for n− 1 observations of Mt can now be written as Ln−1 = BM(DK) +FM(DK). We observe zero

or more Lt samples and exactly one BM(DK) sample per object. For notational convenience, we

define Z , BM(DK).

Another way to think of this model is that the first download immediately yields an observation

Z = BM(D1) and subsequent downloads merely update Z if no modifications occurred in the

meantime. That is, if j downloads occur until the next modification Mt+1, Z is being redefined as

maxj Z = BM(Dj). As soon as a new download Dj+1 reveals Mt+1, we have a Lt sample and reset

Z = 0.

4.2. Maximum Likelihood Estimation

We now turn to the problem of parameter estimation by deriving the likelihood function. Before we

instantiate the model with particular distribution functions, we derive the likelihood in a general

form, similar to the approach taken by Zhao [8]. For a given object, let Lt
iid∼ F with pdf f and

let θ be the parameter vector of F . We denote observed data with lowercase letters, e.g., lt is an

observed lifetime sample of Lt. Then, the likelihood of θ is

L(θ) =
n−1∏
i=1

f(li)

∫ ∞
z

f(t) dt =
n−1∏
i=1

f(li)(1− F (z))

The first factor of the product represents the likelihood of all Lt samples. The second factor is

the density of the Z sample which has to be integrated over the remaining unknown space due to

censoring. When n = 1, we have only a single observation z and the empty product of densities

on the right side evaluates to one.

Moreover, for N iid objects we can group together the number of Lt and Z samples. Let NL

and NZ be the total number of Lt and Z observations. Then, the joint likelihood is

LN(θ) =

NL∏
i=1

f(li)

NZ∏
i=1

(1− F (zi)).
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Unit seconds minutes hours days weeks months years
Letter s m h d W M Y

Table 2: Unit shortcuts used on the time axes of the plots.

4.3. Model Instantiation

A basic instantiation of this model associates a homogeneous Poisson process with each object X

having parameter λ where Mt ∼ Gamma (t, λ−1) and Lt ∼ Exp (β) where β = λ−1. Further, N

iid objects (X1, . . . , XN) have the same parameter λ.

Theorem 1. The maximum likelihood estimator (mle) for N censored iid observations with

Lt
iid∼ Exp (β) has a closed form and is given by

β̂ =


∑NL

i=1 li +
∑Nz

i=1 zi
NL

NL > 0

max
i
zi NL = 0

.

The proof can be found in Appendix A. Other instantiations with Lt being distributed as

Gamma, Weibull, or Lognormal, require numerical methods to find the mle. We will continue the

discussion of this simple model in the following section.

5. Analysis

Having a stochastic model in place, we turn in §5.1 to the analysis of the data with the goal to

validate our model. In §5.2 we then perform a more fine-grained object examination.

5.1. Clustering by Expiration Times

Ultimately we are interested in parameter estimates of θ. Although some objects could stem from

the same distribution, it is quite unlikely that every object in the entire data set follows a process

with the same parameter. Therefore, clustering according to some observable feature is desirable.
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Figure 2: Analysis of expiration values of the JavaScript objects in the AirJaldi data set. The
top left panel shows the ECDFs of (i) the number of objects that have more than Lt
sample and (ii) the number of unique expiration values. The top right panel shows the
expiration distribution of objects for which (i) holds, and the lower two panels display
the distribution for constant and varying expiration values.

The object expiration time is an interesting candidate for clustering because it should represent a

lower bound of the actual modification times2 Intuitively, we thought that the expiration would be

fix and does not change over time, i.e., that it represents a constant offset from the time the object

is being downloaded. When looking at the objects with at least one full uncensored Lt sample,

which are 6.5/3.7 % for JavaScript/HTML in the AirJaldi data set, we find that only 66.8/72 %

of the objects have a constant expiration. We continue to use the AirJaldi data set because it

spans a full month compared to the 2-day LBNL data set (see §3.1). The top left panel of Figure 2

2Recall that machines will keep using their local object in the cache until it expires.
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Figure 3: The changing values of expiration times for the 16 objects having the largest number of
Lt samples. The x-axis shows the index t of the Lt samples and is thus not linear in
time. The y-axis displays the value of the expiration time on a logarithmic scale.

shows the ECDF for number of samples with at least one Lt sample. Then, for objects having this

property, the same plot also includes a dashed ECDF of the number of unique expiration values

observed. Around 30 % of the objects have varying expiration values. The top right panel shows

the distribution of the expiration values of all objects, the lower left panel only of objects with

constant expiration, and the lower right panel only of objects with varying expiration.

We revise our earlier intuition and now believe that two types of expiration models exist: (i) an

object with constant expiration time that represents a fixed offset into the future and (ii) an
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object with absolute expiration value of a fixed point in time in the future. Objects adhering to

the second model would exhibit expiration times that monotonically decrease until the expiration

point is reached. To test our hypothesis, we plot in Figure 3 the expiration times of the 16 objects

with the largest number of Lt samples. The x-axis shows the index t of the Lt samples and is thus

not linear in time. The y-axis displays the value of the expiration time on a logarithmic scale. The

time axis labels are explained in Table 2. We observe that many objects (panels 1-9, left to right)

with mean expiration values close to one minute fluctuate, which could be indicative for model

(ii) where downloads hit uniformly in this interval. For the first three panels of the first two rows,

this could be the case: the Kolmogorov Smirnov goodness-of-fit test returns p-values greater than

0.1.3

For the following analysis, we discard objects with varying expiration times and cluster the

remaining objects accordingly. That means that we only consider the object with an expiration

time distribution of the lower left panel in Figure 2. Each stark discontinuity in the ECDF

correspond to a mode. Note that the modes align with easy to remember time values, such as one

hour, one day, or one year.

Multimodal densities often reflect the existence of subpopulations, which motivates the use of

a mixture model to cluster the objects according to their expiration time. We employ a Gaussian

mixture model (GMM), i.e., a convex combination of G normally distributed mixture components

with pdf φ(x;µi, σ
2
i ). The components are weighted by mixing proportions that are given by a

latent multinomial random variable Y with parameter π, where πi = p(Y i = 1 |π) are constrained

to sum to one. The univariate mixture model is given by p(x | θ) =
∑G

i=1 πiφ(x;µi, σ
2
i ). Figure 4a

shows how this GMM approximates the subpopulations compared to a non-parametric kernel

density estimator (KDE). Here, we compare the KDE to the mixture density obtained via the EM

algorithm for JavaScript expiration times from the LBNL data set.

The next step is to analyze each component in isolation. We test whether the Lt samples come

3Unfortunately we cannot trace back the object because we have only high-level aggregate data in this data set.
For the next measurement we will include the necessary information to validate this assumption.
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Figure 4: Empirical analysis of object expiration times and fitting of a mixture model.

from an exponential distribution. If this is the case, we can continue with maximum likelihood

estimation per cluster using the analytical solution found in §4.3. As shown in Figure 4b, the per-

cluster sample quantiles do not lie on a straight line, indicating that the exponential assumption

is not a good starting point. We plan to investigate different model instantiations in the future

that are a better fit for this type of data.

5.2. Point Process Examination

While the previous section examined expiration times as possible means to group objects together

and then conduct per cluster analysis, we now look at the individual object level and seek to

understand the behavior of the point process Mt in detail. As before, we restrict our analysis to

JavaScript objects from the AirJaldi data set.

Figure 5 shows the first-order differences lt = ∇mt of the 9 processes having the largest number
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Figure 5: Differences of the residual process of object modification times. The red dashed line is a
periodic fit with the three most dominant frequencies from the periodogram. The panels
are sorted by expiration time and each one shows a different object (with a unique ID).

of samples. Note that applying the difference operator ∇ renders the process stationary in its

index. The x-axis shows the event number and the y-axis time. We also fit a periodic model of

the form

l̂t = a0 +

q∑
j=1

[aj cos(2πωjt) + bj sin(2πωjt)]. (1)

From the scaled periodogram of lt we extract the q = 3 most dominant frequencies ωj. The red

dashed line visualizes this fit and the dotted blue line shows the intercept a0 = x̄. After manually

doing this process for a few objects we wrote R functions to automate this procedure; the code
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(b) Squared coherency of lt of object 117199 (top-right) and

880147 (bottom-left).

Figure 6: Examination of one specific residual process {mt} and coherency analysis between two
{lt} processes from Figure 5.

can be found in Appendix B.

The large lifetime spikes in Figure 5 do not necessarily mean that the lifetime has in fact that

value, rather, we hypothesize that they represents measurement outages introduced by the lack of

downloads of a given object. The fit can be regarded as the baseline and the spikes help us to

understand when outages occur.

Let us analyze one of the processes in more detail. A plot of the residual process {mt} of object

117199 in the top-right panel is shown in Figure 6a. An inspection of the jumps reveals that they

correspond to night times, confirming the intuition that jumps refer to the lack of samples. Object

462662 in the bottom-right panel of Figure 5 has even sharper jumps happening from 12am to 8am.

After removing the spikes of the {lt} process, the lifetimes look exponential and for object 462662

the Kolmogorov Smirnov goodness-of-fit yields a p-value of 0.9, indicating that the corresponding

13



{mt} process is homogeneous Poisson. This contrasts to our result in §5.1 and suggests revisiting

our clustering method.

Next we compare two similar looking objects: 117199 and 880147 shown in the top-right panel

and bottom-left panel of Figure 5. Figure 6b shows the squared coherency over a band of L = 10,

df ≈ 13 and F2,df−2(.001) ≈ 13.72 at the significance level of α = .001. Thus we can reject the null

hypothesis of ρ2y·x(ω) = 0 for values where ρ̄2y·x(ω) > C0.001, where C0.001 = 0.43 is depicted by the

horizontal red line. The dashed blue lines show the confidence band, which is valid for ρ2y·x(ω) > 0.

The objects appear to be coherent.

6. Conclusion

In this project we set out to understand the modification process of web objects by passively

watching network traffic. This process is only indirectly observable via download meta data.

We develop a model based on renewal processes and derive the likelihood function. To exploit

the similarity of objects, we cluster them using a Gaussian mixture model and test our model

against each cluster. We find that our Poisson process assumption does not hold when looking at

the data on a per-cluster basis.

Further, we try to understand the point process of modification times on a per-object basis.

By carrying out a spectral analysis of the lifetimes, we find the most dominant frequencies that

describe well the modifications despite measurement outages. Further, a comparison of different

object spectra confirms that several objects have a similar modification behavior, which encourages

the use of clustering techniques.

The presented analysis and model descriptions are still in a very fledgling stage and need further

thought to capture the domain-specific properties of web objects. In future work, we plan to try

other directions that go beyond renewal processes, such as hidden Markov models. Also, currently

we consider the process of object downloads as fixed to simplify the analysis. Promising seems

to be the use of a doubly stochastic point process of two interwoven processes to express that Dt
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yields an observations of Mt. Moreover, we can improve on clustering objects by including other

meta data than just the expiration time.
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A. Proof of Theorem 1

The log-likelihood of LN(θ) is

`N(θ) =

NL∑
i=1

log f(li) +

NZ∑
i=1

log(1− F (zi))

For Lt ∼ Exp (β), `N becomes

`N(θ) =

NL∑
i=1

log

(
1

β
exp

{
− li
β

})
+

NZ∑
i=1

log

(
1−

(
1− exp

{
−zi
β

}))

= Nl log
1

β
+

NL∑
i=1

log exp

{
− li
β

}
+

NZ∑
i=1

log exp

{
−zi
β

}

= −Nl log β − 1

β

NL∑
i=1

li +− 1

β

NZ∑
i=1

zi

= −Nl log β − 1

β

(
NL∑
i=1

li +

NZ∑
i=1

zi

)
.

Setting

∂

∂β
`N(β) = −NL

β
+

1

β2

(
NL∑
i=1

li +

NZ∑
i=1

zi

)
≡ 0

yields

β̂ =

∑NL

i=1 li +
∑NZ

i=1 zi
NL

NL > 0.

Since

∂2

∂β2
`N(β)

∣∣∣∣
β=β̂

= −N
3
L

c2
< 0 where c =

NL∑
i=1

li +

NZ∑
i=1

zi

we have indeed found the mle for NL > 0. When NL = 0, the first term in the log-likelihood
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vanishes and we need to bound Z to obtain a meaningful result by using an indicator function I:

`N(θ) =

NZ∑
i=1

log

(
1−

(
1− exp

{
−zi
β

}))
I(0 < zi < β)

= − 1

β

NZ∑
i=1

ziI(0 < zi < β).

Since this is a strictly increasing function in β, the mle is at β̂ = maxi zi, resulting in

β̂ =


∑NL

i=1 li +
∑Nz

i=1 zi
NL

NL > 0

max
i
zi NL = 0

.

�

B. Automated Spectral Analysis in R

To facilitate the automated extraction of dominant frequencies and fit a periodic model according

to equation 1, we wrote the following R functions.

# Extract the top k most dominant frequencies from a periodogram. When

# neighborhood has a value greater than zero, this many neighboring frequencies

# left and right of a dominant frequency are also removed before considering

# the next most dominant one.

# periodogram: a periodogram object, e.g., as returned by spec.pgram().

# k: the number of most dominant frequencies to extract.

# neighborhood: when selecting a dominant function, remove that many neighbors

# around this frequency as well.

top.frequencies = function(periodogram, k=3, neighborhood=0)

{

spc = periodogram$spec
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frq = periodogram$freq

topk = c()

while (length(topk) < k)

{

top = which.max(spc)

topk[length(topk)+1] = frq[top]

if (neighborhood > 0)

{

idx = seq(top − neighborhood, top + neighborhood)

spc = spc[−idx]

frq = frq[−idx]

} else {

spc = spc[−top]

frq = frq[−top]

}

}

topk

}

# Fit a periodic linear model with the given frequencies to a time series.

# Avoiding an intercept term in the fit can be achieved via setting

# intercept=F.

# x: the time series

# f: vector of frequencies to fit.

# intercept: whether to include an intercept term in the regression.

periodic.fit = function(x, frequencies, intercept=T)

{

idx = 1:length(x)

sin.fit = function(f) sin(2*pi*idx*f)
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cos.fit = function(f) cos(2*pi*idx*f)

f = lapply(frequencies, function(f) cbind(cos.fit(f), sin.fit(f)))

covariates = sapply(1:length(f), function(i) paste("f[[", i, "]]", sep=""))

add = function(a, b) paste(a, b, sep= " + ")

covariates = Reduce(add, covariates)

form = "x ~"

if (! intercept)

form = paste(form, 0, "+")

form = paste(form, covariates)

lm(as.formula(form))

}

# Example usage of the above functions.

x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)

x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)

x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)

x = x1 + x2 + x3

spc = spec.pgram(x, taper=0, log="no")

freqs = top.frequencies(spc)

fit = periodic.fit(x, freqs)

plot.ts(x)

lines(fitted(fit), col="red", lty=2)
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