
HILTI: An Abstract Execution Environment for
Deep, Stateful Network Traffic Analysis

Robin Sommer
ICSI / LBNL

robin@icir.org

Matthias Vallentin
UC Berkeley

vallentin@icir.org

Lorenzo De Carli
University of

Wisconsin-Madison
lorenzo@cs.wisc.edu

Vern Paxson
ICSI / UC Berkeley
vern@icir.org

ABSTRACT
When developing networking systems such as firewalls, routers,
and intrusion detection systems, one faces a striking gap between
the ease with which one can often describe a desired analysis in
high-level terms, and the tremendous amount of low-level imple-
mentation details that one must still grapple with to come to a ro-
bust solution. We present HILTI, a platform that bridges this divide
by providing to application developers much of the low-level func-
tionality, without tying it to a specific analysis structure. HILTI
consists of two parts: (i) an abstract machine model that we tai-
lor specifically to the networking domain, directly supporting the
field’s common abstractions and idioms in its instruction set; and
(ii) a compilation strategy for turning programs written for the ab-
stract machine into optimized, natively executable code. We have
developed a prototype of the HILTI compiler toolchain that fully
implements the design’s functionality, and ported exemplars of net-
working applications to the HILTI model to demonstrate the apt-
ness of its abstractions. Our evaluation of HILTI’s functionality
and performance confirms its potential to become a powerful plat-
form for future application development.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Se-
curity and protection; C.2.3 [Computer-Communication Net-
works]: Network Operations—Network monitoring

General Terms
Measurement; Security

Keywords
Real-time monitoring; deep packet inspection; intrusion detection

1. INTRODUCTION
Deep, stateful network packet inspection represents a crucial

building block for applications that analyze network traffic. How-
ever, when developing systems such as firewalls, routers, and net-
work intrusion detection systems (NIDS), one faces a striking gap
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC’14, November 5–7, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3213-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663716.2663735.

between the ease with which one can often describe the desired
analysis in high-level terms (“search for this pattern in HTTP re-
quests”), and the tremendous amount of low-level implementation
details that one must still grapple with to come to an efficient and
robust implementation. When applications reconstruct a network’s
high-level picture from zillions of packets, they must not only oper-
ate efficiently to achieve line-rate performance under real-time con-
straints, but also deal securely with a stream of untrusted input that
requires conservative fail-safe processing. Despite such implemen-
tation challenges, our community sees little reuse of existing, well-
proven functionality across applications. While individual projects
invest significant resources into optimizing their particular imple-
mentation, new efforts can rarely leverage the accumulated experi-
ence that such systems have garnered through years of deployment.
Not only do they end up building much of same functionality from
scratch each time, but they also tend to fall into the same pitfalls
that others had to master before.

In this work we set out to overcome this situation. We present
a novel platform for building network traffic analysis applications
that provides much of the standard low-level functionality without
tying it to a specific analysis structure. Our system consists of two
parts: (i) an abstract machine model that we tailor specifically to
the networking domain, directly supporting the field’s common ab-
stractions and idioms in its instruction set; and (ii) a compilation
strategy for turning programs written for the abstract machine into
optimized, natively executable code. Our abstract machine model
has at its core a high-level intermediary language for traffic inspec-
tion (HILTI) that provides rich data structures, powerful control
flow primitives, extensive concurrency support, a secure memory
model protecting against unintended control and data flows, and
potential for domain-specific optimizations that include transpar-
ent integration of non-standard hardware capabilities. Conceptu-
ally, HILTI provides a middle-layer situated between the operating
system and a host application, operating invisibly to the applica-
tion’s end-users who do not directly interact with it. An applica-
tion leverages HILTI by compiling its analysis/functionality from
its own high-level description (like a firewall’s rules or a NIDS’s
signature set) into HILTI code. HILTI’s compiler then translates it
further down into native code.

We have developed a prototype of the HILTI compiler toolchain
that fully supports all of the design’s functionality, and we have
ported a set of example networking applications to the HILTI ma-
chine model that demonstrate the aptness of its abstractions, includ-
ing the BinPAC protocol parser generator [36] and Bro’s scripting
language [37]. Even though performance does not yet represent a
particular focus of the prototype’s code generator, our evaluation
with real-world network traffic shows that already the compiled
code executes with generally similar performance as native imple-

Domain-specific
data types

State
management

Concurrent
analysis

Real-time
performance Robust execution High-level

components

Built-in first-class
networking types

Containers with
state management

support
Asynchronous and

timer-driven
execution

Domain-specific
concurrency

model

Incremental
processing

Compilation to
native code

Extensive
optimization

potential

Contained
execution

environment

Static type system

Platform for
building reusable

functionality

HILTI Environment

Traffic Analysis Building Blocks

Figure 1: Building blocks of network traffic applications and how HILTI supports them.

mentations, with the potential to significantly outperform them in
the future as we further optimize the toolchain. We are releasing
both HILTI and our example applications as open-source software
to the community [6].

As one of HILTI’s overarching objectives we aim to build a plat-
form that integrates much of the knowledge that the networking
community has collected over decades into a single framework for
applications to build upon. While in this work we focus on the low-
level machine model, we envision HILTI to eventually ship with
an extensive library of reusable higher-level components, such as
packet reassemblers, session tables with built-in state management,
and parsers for specific protocols. By providing both the means
to implement such components as well as the glue for their inte-
gration, HILTI can allow application developers to focus on their
core functionality, relieving them from low-level technical work
that others have previously implemented.

We structure the remainder of this paper as follows. We motivate
our work in §2 by examining the potential for sharing functionality
across networking applications. We present HILTI’s design in §3
and showcase four example applications in §4. We discuss our im-
plementation in §5, and then evaluate HILTI in §6. We discuss
some broader aspects in §7, and summarize related work in §8. We
conclude in §9.

2. SHARING FUNCTIONALITY
Internally, different types of networking applications—packet

filters, stateful firewalls, routers, switches, intrusion detec-
tion systems, network-level proxies, and even OS-level packet
processing—all exhibit a similar structure that builds on a com-
mon set of domain-specific idioms and components.1 Implement-
ing such standard functionality is not rocket science. However,
experiences with developing robust and efficient monitoring sys-
tems reveal that coming to correct and memory-safe code quickly
proves challenging—much more than one might intuitively expect.
It is, hence, unfortunate that in contrast to other domains, where
communities have developed a trove of reusable standard func-
tionality (e.g., HPC or cryptography), we find little sharing across
networking systems—not even in the open-source world. We ex-
amined the code of three open-source networking applications of
different types: iptables (firewall), Snort (NIDS), and XORP (soft-
ware router). All three implement their own versions of standard
data structures with state management, support for asynchronous

1To simplify terminology, throughout our discussion we use the
term “networking application” to refer to a system that processes
network packets directly in wire format. We generally do not con-
sider other applications that use higher-level interfaces, such as
Unix sockets. While these could benefit from HILTI as well, they
tend to have different characteristics that exceed the scope here.

execution, logic for discerning IPv4 and IPv6 addresses, and proto-
col inspection. We also compared the source code of the three ma-
jor open-source NIDS implementations (Bro, Snort, and Suricata),
and we found neither any significant code reuse across these sys-
tems, nor leveraging of much third-party functionality. libpcap
and libz are the only external libraries to which they all link. In
addition, Snort and Suricata both leverage PCRE for regular ex-
pression matching, while Bro implements its own engine. Indeed,
in a panel discussion at RAID 2011 all three projects acknowledged
the lack of code reuse, attributing it to low-level issues concerning
program structures and data flows.

From our source code analysis we identify a number of com-
mon building blocks for networking applications, as illustrated in
Figure 1:

Domain-specific Data Types. Networking applications use a
set of domain-specific data types for expressing their analysis, such
as IP addresses, transport-layer ports, network prefixes, and time.
HILTI’s abstract machine model provides these as first-class types.

State Management. Most applications require long-lived state,
as they correlate information across packet and session bound-
aries. However, managing that state in real-time requires effec-
tive expiration strategies [16]. HILTI provides container types with
built-in state management, and timers to schedule processing asyn-
chronously into the future, e.g., for customized cleanup tasks or
time-driven logic.

Concurrent Analysis. High-volume network traffic exhibits
an enormous degree of inherent parallelism [38], and applications
need to multiplex their analyses across potentially tens of thou-
sands of data flows, either inside a single thread or parallelized
across multiple CPUs. High-performance applications employ the
latter only sparingly today, as it remains challenging to parallelize
stateful analysis efficiently across threads while maintaining lin-
ear scaling with the workload size. HILTI supports both forms of
parallelism by (i) enabling transparent incremental processing, and
(ii) providing a concurrency model that employs cooperative mul-
titasking to supply applications with a large number of lightweight
threads with well-defined semantics.

Real-time Performance. With 10 Gbps links now standard even
in medium-sized environments, applications deal with enormous
packet volumes in real-time. In addition to supporting parallel pro-
cessing, HILTI compiles analyses into native executables with the
potential for extensive domain-specific code optimization.

Robust & Secure Execution. Networking applications process
untrusted input: attackers might attempt to mislead a system, and—
more mundanely— real-world traffic contains plenty “crud” [37]
not conforming to any RFC. While writing robust C code remains
notoriously difficult, HILTI’s abstract machine model provides a
contained, well-defined, and statically typed environment that, for
example, prevents code injection attacks.

Application
Core

Analysis
Compiler

Analysis
Specification

HILTI Machine
Code

Runtime
Library

HILTI
Compiler LLVM Bitcode LLVM

Compiler/Linker
Native

Machine Code

HILTI Machine Environment LLVM ToolchainHost Application

C Interface
Stubs

Figure 2: Workflow for using HILTI.

cat hello.hlt
module Main

import Hilti

void run() { # Default entry point for execution.
call Hilti::print("Hello, World!")

}

hilti-build hello.hlt -o a.out && ./a.out
Hello, World!

Figure 3: Building a simple HILTI program.

High-level Standard Components. HILTI facilitates reuse of
higher-level functionality across applications by providing both
(i) a lingua franca for expressing their internals, and (ii) exten-
sive interfaces for integration and customization across both host
applications and other HILTI-based components.

3. HILTI ABSTRACT MACHINE MODEL
The heart of HILTI consists of an abstract machine model that

we tailor to network traffic analysis. In the following we discuss
HILTI’s design in more detail. For brevity we will use the name
HILTI for both the abstract machine model itself as well as for the
framework that implements it, i.e., the compiler toolchain and run-
time library.

3.1 Workflow
Figure 2 shows the overall workflow when using HILTI. A host

application leverages HILTI for providing its functionality. Typ-
ically, the host application has a user-supplied analysis specifica-
tion that it wants to instantiate; e.g., the set of filtering rules for a
firewall, or the set of signatures for a NIDS. The application pro-
vides a custom analysis compiler that translates its specifications
into HILTI machine code, either in the form of text files or, more
conveniently, as an in-memory AST representation it creates via
a corresponding C++ API that HILTI provides. In either case the
HILTI compiler then compiles that input into bitcode for LLVM (the
Low-Level Virtual Machine [30]), which we leverage for all target-
specific code generation. The HILTI compiler also generates a set
of C stubs for the host application to interface with the resulting
code. Finally, LLVM combines compiled code, stubs, runtime li-
brary, and the host application into a single unit of native machine
code for execution, either statically or just-in-time at startup (JIT).
Our prototype includes two tools, hiltic and hilti-build,
which employ this workflow to compile HILTI code into native
objects and executables, respectively. Figure 3 shows an example

compiling a trivial HILTI program into a static binary. Alterna-
tively, hiltic can JIT-execute the source directly.

Generally, there are two ways to structure a host application.
First, the HILTI code can be the main entry point to the execu-
tion, with the application providing additional functionality via fur-
ther C-level functions called out to as necessary as if using an ex-
ternal library; Figure 3 demonstrates this model by defining the
Main::run() as the entry point. Alternatively, the host appli-
cation itself can drive execution and leverage HILTI-based func-
tionality by calling the generated C stubs on demand (e.g., a NIDS
might feed payload into a HILTI-based protocol parser; see §4).

3.2 Execution Model
Syntax. To keep the syntax simple we model HILTI’s in-

struction set after register-based assembler languages. A pro-
gram consists of a series of instructions of the general form
<target> = <mnemonic> <op1> <op2> <op3>, with target/-
operands omitted where not needed. In addition, there exist prim-
itives to define functions, custom data types, and local and thread-
local variables (but no truly global; see below). By convention,
mnemonics have the form <prefix>.<operation>, where
the same prefix indicates a related set of functionality; Table 1
summarizes the available groups. For data types in particular,
<prefix> refers to the type and the first operand to the manip-
ulated instance, e.g., list.append l 42, appends the integer
42 to the specified list l. In total HILTI currently offers about 200
instructions (counting instructions overloaded by their argument
types only once). Generally, we deliberately limit syntactic flex-
ibility to better support compiler transformations because HILTI
mainly acts as compiler target, and not a language that users write
code for directly.

Rich Data Types. While being parsimonious with syntax, we
equip HILTI with a rich set of high-level data types relevant to the
networking domain. First, HILTI features standard atomic types
such as integers, character sequences (with separate types for Uni-
code strings and raw bytes), floating-point, bitsets, enums, and stat-
ically typed tuples. In addition, HILTI comes with domain-specific
types such as IP addresses (transparently supporting both IPv4 and
IPv6), CIDR-style subnet masks, transport-layer ports, and times-
tamp / time interval types with nanosecond resolution. All these
types provide crucial context for type checking, optimization, and
data flow/dependency analyses. Second, HILTI offers a set of high-
level container types (lists, vectors, sets, maps) that come with
built-in support for state management that automatically expires
elements according to a given policy. Iterators, along with over-
loaded operators, provide type-safe generic access to container ele-
ments. Further domain-specific types include overlays for dissect-
ing packet headers into their components; channels for transfer-
ring objects between threads; classifiers for performing ACL-style

packet classification; regular expressions supporting incremental
matching and simultaneous matching of multiple expressions; in-
put sources for accessing external input (e.g., network interfaces
and trace files); timer managers for maintaining multiple indepen-
dent notions of time [43]; and files for interacting with the file sys-
tem.

Memory Model. HILTI’s memory model is statically type-safe,
with containers, iterators, and references parameterized by type. A
new instruction makes dynamic allocations explicit. The HILTI
runtime automatically garbage-collects objects that have become
no longer accessible.

Control Flow and Concurrency. For flexible control flow,
HILTI provides timers to schedule function calls to the future; clo-
sures for capturing function calls; exceptions for robust error han-
dling; and hooks for allowing host applications to provide non-
intrusive callbacks that run synchronously at well-defined times.

HILTI also supports two styles of concurrency. First, within a
single hardware thread, one can multiplex analyses by switching ar-
bitrarily between stacks using co-routines. Consider protocol anal-
ysis where the host application incrementally feeds chunks of pay-
load into the parsing code, switching between different sessions as
their packets arrive. When the host’s C code calls for the first time
the HILTI parsing function for a session, HILTI internally instanti-
ates a fiber object for the call’s execution that can capture its state,
and then proceeds with processing the data. Once parsing reaches
the end of the currently available chunk, it suspends execution by
freezing the stack and copying the CPU’s registers into the fiber.
Later, when new payload arrives for that session, the application
resumes parsing by reactivating the fiber, leading HILTI to rein-
state the frozen stack and continue where it left off. Compared to
traditional implementations—which typically maintain per-session
state machines manually that record the current state—this model
remains transparent to the analysis code and hence simplifies its
structure.

Second, HILTI provides threads for distributing an analysis con-
currently across CPU cores. We employ an Erlang-style thread-
ing model that provides an application with a large supply of
lightweight virtual threads, which a runtime scheduler then maps
to a small number of hardware threads via cooperative multi-
tasking. HILTI identifies threads with 64-bit integer IDs: The in-
struction thread.schedule foo("abc") 123456 sched-
ules an asynchronous invocation of the function foo with one
string argument abc to thread number 123456. The ID-based
model maps directly to hash-based load-balancing schemes that
networking applications commonly deploy for parallel traffic anal-
ysis (e.g., Suricata [5] and Bro [44]). For example, to distribute
flow processing across threads, one would hash the flow’s 5-tuple
into an integer and then interpret that value as the ID of the vir-
tual thread to assign the corresponding analysis to. As processing
within each virtual thread proceeds sequentially, this approach im-
plicitly serializes all computation relating to a single flow and thus
obviates the need for further intra-flow synchronization. We find
typical analysis tasks amenable to this model [43].

HILTI’s execution model prevents data races and low-level dead-
locks by design: virtual threads cannot share state directly. In
particular, HILTI does not provide global variables visible across
threads. Instead, each virtual thread receives its own set of thread-
local variables for recording state related to its processing. Ex-
changing global state requires explicit message passing, either by
connecting threads with HILTI’s thread-safe channel data type, or
by scheduling tasks to a target thread and passing the relevant in-

Functionality Mnemonic

Bitsets bitset
Booleans bool
CIDR masks network
Callbacks hook
Closures callable
Channels channel
Debug support debug
Doubles double
Enumerations enum
Exceptions exception
File i/o file
Flow control (No joint prefix)
Hashmaps map
Hashsets set
IP addresses addr
Integers int
Lists list

Functionality Mnemonic

Packet i/o iosrc
Packet classification classifier
Packet dissection overlay
Ports port
Profiling profiler
Raw data bytes
References ref
Regular expressions regexp
Strings string
Structs struct
Time intervals interval
Timer management timer_mgr
Timers timer
Times time
Tuples tuple
Vectors/arrays vector
Virtual threads thread

Table 1: HILTI’s main instruction groups.

formation as arguments.2 In either case, the runtime deep-copies
all mutable data so that the sender will not see any modifications
that the receiver may make. This strict model of data isolation en-
ables reliable concurrent execution because it encourages value se-
mantics as opposed to complicated data dependencies that would
require locks to synchronize access.

3.3 Profiling & Debugging
A key challenge for high-volume traffic analysis is assessing and

optimizing runtime performance [16]. HILTI supports measuring
CPU and memory properties via profilers that track attributes such
as CPU cycles, memory usage, and cache performance for arbitrary
blocks of code. During execution the HILTI runtime records mea-
sured attributes to disk at regular intervals, e.g., enabling tracking
of CPU time spent per time interval [16, 17]. The HILTI compiler
can also insert instrumentation to profile at function granularity.

3.4 Host Application API
HILTI comes with an extensive C API that offers host applica-

tions direct access to its data types. In addition, control flow can
transfer bi-directionally between applications and HILTI. C pro-
grams call HILTI functions via the C stubs, and HILTI code can
invoke arbitrary C functions. The API integrates exception han-
dling, timer management, fiber resumption, and thread scheduling
between HILTI and application.

A second part of HILTI’s API is a C++ AST interface
for constructing HILTI programs in memory. hiltic and
hilti-build are in fact just wrappers around this API, which
host applications can likewise employ to compile their analysis
specifications into HILTI code. Combining AST and JIT interfaces
enables applications to go all the way from user-level specification
to native code on the fly.

4. APPLICATION EXEMPLARS
We now develop four applications as examples to illustrate

HILTI’s ability to accommodate a wide range of common network
processing tasks: (i) a BPF-style packet filter engine; (ii) a stateful
firewall; (iii) a parser generator for network protocols; and (iv) a
compiler for Bro scripts. We have implemented all four as pro-
totypes. While we consider the former two primarily proof-of-
concepts, the latter two represent realistic and fully functional ap-
plications that we intend to further improve as HILTI matures.

2Note that the interpretation of HILTI’s global keyword in code
examples below is “a variable global to the current virtual thread”.

type IP::Header = overlay {
<name>: <type> at <offset> unpack <format> [(bits)]
version: int<8> at 0 unpack UInt8InBigEndian (4, 7),
hdr_len: int<8> at 0 unpack UInt8InBigEndian (0, 3),
[...]
src: addr at 12 unpack IPv4InNetworkOrder,
dst: addr at 16 unpack IPv4InNetworkOrder

}

bool filter(ref<bytes> packet) { # Input: raw data.
local addr a1, a2
local bool b1, b2, b3

Extract fields and evaluate expression.
a1 = overlay.get IP::Header src packet
b1 = equal a1 192.168.1.1
a1 = overlay.get IP::Header dst packet
b2 = equal a2 192.168.1.1
b1 = or b1 b2
b2 = equal 10.0.5.0/24 a1
b3 = or b1 b2
return b3

}

Figure 4: Generated HILTI code for the BPF filter
host 192.168.1.1 or src net 10.0.5.0/24.

Berkeley Packet Filter.
As an initial simple application to explore, we implemented a

compiler for BPF [32]. BPF traditionally translates filters into code
for its custom internal stack machine, which it then interprets at
runtime. Compiling filters into native code via HILTI avoids the
overhead of interpreting, enables further compile-time code opti-
mization, and facilitates easy extension of the filtering capabilities
in the future.

Figure 4 shows HILTI code that our compiler produces for a sim-
ple BPF filter. The generated code leverages a HILTI overlay type
for parsing IP packet headers. Overlays are user-definable compos-
ite types that specify the layout of a binary structure in wire for-
mat and provide transparent type-safe access to its fields while ac-
counting for specifics such as alignment and endianness. While our
proof-of-concept BPF compiler supports only IPv4 header condi-
tions, adding further BPF features would be straight-forward. The
compiler could also go beyond standard BPF capabilities and, for
example, add stateful filtering [25].

Stateful Firewall.
Our second proof-of-concept host application is a basic state-

ful firewall, implemented as a Python host application that com-
piles a list of rules into corresponding HILTI code. To simplify
the example, our tool supports only rules of the form (src-net,
dst-net) → {allow,deny}, applied in order of specifica-
tion. The first match determines the result, with a default action of
deny. In addition, we provide for a simple form of stateful match-
ing: when a host pair matches an allow rule, the code creates a
temporary dynamic rule that will permit all packets in the opposite
direction until a specified period of inactivity has passed.

Figure 5 shows the code generated for a simple rule set, along
with additional static code that performs the matching. The code
leverages two HILTI capabilities: (i) the classifier data type for
matching the provided rules; and (ii) a set indexed by host pair
to record dynamic rules, with a timeout set to expire old entries.
While we have simplified this proof-of-concept firewall for demon-
stration purposes, adding further functionality would be straight-
forward. In practice, the rule compiler could directly support the
syntax of an existing firewall system, like iptables.

Compiled rule set (net1 -> net2) -> {Allow, Deny}.
Generated by the application’s analysis compiler.

void init_rules(ref<classifier<Rule, bool>> r) {
True -> Allow; False -> Deny.
classifier.add r (10.3.2.1/32, 10.1.0.0/16) True
classifier.add r (10.12.0.0/16, 10.1.0.0/16) False
classifier.add r (10.1.6.0/24, *) True
classifier.add r (10.1.7.0/24, *) True

}

The host application also provides the following
static code.

Data type for a single filter rule.
type Rule = struct { net src, net dst }

The classifier storing the rules.
global ref<classifier<Rule, bool>> rules

Dynamic rules: address pairs allowed to communicate.
global ref< set< tuple<addr, addr> > > dyn

Function to initialize classifier at startup.
void init_classifier() {
rules = new classifier<Rule, bool> # Instantiate.
call init_rules(rules) # Add rules.
classifier.compile rules # Freeze/finalize.

Create set for dynamic state with timeout of 5 mins
of inactivity.
dyn = new set<tuple<addr, addr>>
set.timeout dyn ExpireStrategy::Access interval(300)

}

Function called for each packet, passing in
timestamp and addresses. Returns true if ok.
bool match_packet(time t, addr src, addr dst) {
local bool b

Advance HILTI’s global time. This will expire
inactive entries from the state set.
timer_mgr.advance_global t

See if we have a state entry for this pair.
b = set.exists dyn (src, dst)
if.else b return_action lookup

lookup: # Unknown pair, look up rule.
try { b = classifier.get rules (src, dst) }
catch (ref<Hilti::IndexError> e) {

return False # No match, default deny.
}

if.else b add_state return_action

add_state: # Add dynamic rules to allow both sides.
set.insert dyn (src, dst)
set.insert dyn (dst, src)

return_action: # Return decision.
return b

}

Figure 5: HILTI code for firewall example.

A Yacc for Network Protocols.
To provide a more complete example, we reimplemented the

BinPAC parser generator [36] as a HILTI-based compiler. Bin-
PAC is a “yacc for network protocols”: given a protocol’s grammar,
it generates the source code of a corresponding protocol parser.
While the original BinPAC system outputs C++, our new version
targets HILTI. As we also took the opportunity to clean up and
extend syntax and functionality, we nicknamed the new system
BinPAC++.

const Token = /[^ \t\r\n]+/;
const NewLine = /\r?\n/;
const WhiteSpace = /[\t]+/;

type RequestLine = unit {
method: Token;
: WhiteSpace;
uri: URI;
: WhiteSpace;
version: Version;
: NewLine;

};

type Version = unit {
: /HTTP\//; # Fixed string as regexp.
number: /[0-9]+\.[0-9]+/;

};

(a) BinPAC++ grammar excerpt for HTTP.

struct http_requestline_object {
hlt_bytes* method;
hlt_bytes* uri;
struct http_version_object* version;
[... some internal fields skipped ...]

};

extern http_requestline_object*
http_requestline_parse(hlt_bytes *,

hlt_exception **);

(b) C prototypes generated by HILTI compiler. The host
application calls http_requestline_parse to parse a

request line.

[binpac] RequestLine
[binpac] method = ‘GET’
[binpac] uri = ‘/index.html’
[binpac] Version
[binpac] number = ‘1.1’

(c) Debugging output showing fields as input is parsed.

Figure 6: BinPAC++ example (slightly simplified).

Figure 6 (a) shows an excerpt of a BinPAC++ grammar
for parsing an HTTP request line (e.g., GET /index.html
HTTP/1.1). In Figure 6 (b) we show the C prototype for the
generated parsing function as exposed to the host application, in-
cluding a struct type corresponding to the parsed protocol data unit
(PDU). At runtime, the generated HILTI code allocates instances
of this type and sets the individual fields as parsing progresses, as
the debugging output in Figure 6 (c) shows for an individual re-
quest. When the parser finishes with a field, it executes any call-
backs (hooks) that the host application specifies for that field. If
the grammar does not include hooks, the host application can still
extract the parsed data from the returned struct (as Figure 6 (b) ex-
emplifies) after HILTI finishes processing the type.3

BinPAC++ provides the same functionality as the original im-
plementation, and we converted parsers for HTTP and DNS over
to the new system. Internally, however, we could structure Bin-
PAC++ quite differently by taking advantage of HILTI’s abstrac-
tions. While the original BinPAC provides its own low-level
runtime library for implementing domain-specific data types and
buffer management, we now use HILTI’s primitives and idioms,
which results in higher-level code and a more maintainable parser
generator. Leveraging HILTI’s flexible control-flow, we can now
generate fully incremental LL(1)-parsers that postpone parsing
3 An advantage of using hooks is that HILTI could optimize away
the parsing of unused fields and also avoid further unnecessary data
copying (not implemented yet).

whenever they run out of input and transparently resume once more
becomes available. In contrast, the C++ parsers of the original Bin-
PAC need to manually manage the parsing process and further rely
on an additional PDU-level buffering layer that often requires ad-
ditional hints from the grammar writer to work correctly. Finally,
while the original BinPAC requires the user to write additional C++
code for any logic beyond describing basic syntax layout, Bin-
PAC++ extends the grammar language with semantic constructs for
annotating, controlling, and interfacing to the parsing process, in-
cluding support for keeping arbitrary state, by compiling them to
corresponding HILTI code.

BinPAC++ remains independent of a specific host application
because HILTI generates external C interfaces for the compiled
parsers. We demonstrate this functionality by extending Bro to both
drive the parsing and use the results, just as it does with its built-in
protocol parsers. As Bro decodes protocols, it executes event han-
dlers written in Bro’s custom scripting language. For example, the
internal TCP parser generates a connection_established
event for any successful three-way handshake, passing along meta-
data about the corresponding connection as the event’s argument.
Similarly, Bro’s HTTP parser generates http_request and
http_reply events for client and server traffic, respectively. To
define the events that BinPAC++ will generate for Bro, we add
additional “event configuration files”. Figure 7 showcases the in-
teraction between the two systems: (a) shows a basic BinPAC++
grammar to parse SSH banners; the event configuration file in (b)
tells Bro to trigger an ssh_banner event whenever the generated
code finishes parsing an SSH::Banner unit; and (c) shows cor-
responding Bro script code that implements a simple handler for
that event. Finally, (d) demonstrates the usage: Bro loads the event
configuration file from the command line, pulls in the correspond-
ing BinPAC++ grammar, compiles the grammar into HILTI parsing
code, and generates internal HILTI glue code that at runtime inter-
faces back to Bro’s event engine for triggering the defined events.

Bro Script Compiler.
Our final application implements a compiler for Bro scripts [37].

Unlike purely signature-based NIDSs, Bro’s domain-specific,
Turing-complete scripting language decouples the system from any
specific analysis model. In addition to detection tasks, Bro uses its
language also for higher-level analysis logic in the form of library
functionality that ships with the distribution. For example, most
protocol-specific scripts perform per-session state-tracking, such as
the HTTP analysis correlating replies with earlier requests.

To demonstrate that HILTI can indeed support such a complex,
highly stateful language, we developed a Bro plugin that translates
all loaded scripts into corresponding HILTI logic, mapping Bro
constructs and data types to HILTI equivalents as appropriate. The
plugin executes the HILTI toolchain just-in-time, generating native
code at startup. When Bro generates events, it triggers the HILTI
code instead of going through its standard script interpreter.

With HILTI’s rich set of high-level data types we generally found
mapping Bro types to HILTI equivalents straightforward. While
Bro’s syntax is complex, the compiler can generally directly con-
vert its constructs to HILTI’s simpler register-based language. Fig-
ure 8 shows a simple example compiling two event handlers track-
ing the server addresses of all established TCP connections. As the
example shows, the compiler translates Bro’s event handler into
HILTI hooks (which are, roughly, functions with multiple bodies
that all execute upon invocation).

module SSH;

export type Banner = unit {
magic : /SSH-/;
version : /[^-]*/;
dash : /-/;
software: /[^\r\n]*/;

};

(a) BinPAC++ grammar for SSH banners in ssh.pac2.

grammar ssh.pac2; # BinPAC++ grammar to compile.

Define the new parser.
protocol analyzer SSH over TCP:

parse with SSH::Banner, # Top-level unit.
port 22/tcp, # Port to trigger parser.

For each SSH::Banner, trigger an ssh_banner() event.
on SSH::Banner

-> event ssh_banner(self.version, self.software);

(b) Event configuration file in ssh.evt.

event ssh_banner(version: string, software: string) {
print software, version;
}

(c) Bro event handler in ssh.bro.

bro -r ssh.trace ssh.evt ssh.bro
OpenSSH_3.9p1, 1.99
OpenSSH_3.8.1p1, 2.0

(d) Output with a single SSH session (both sides).

Figure 7: Bro/BinPAC++ interface example.

Our prototype compiler supports most features of the Bro script-
ing language.4 Specifically, it supports running Bro’s default HTTP
and DNS analysis scripts, which we use as representative case stud-
ies in our evaluation (see §6). The HTTP and DNS scripts generate
extensive logs of the corresponding protocol activity, correlating
state across request and reply pairs, plus (in the case of HTTP) ex-
tracting and identifying message bodies.

5. IMPLEMENTATION
We now discuss our prototype HILTI implementation, which

consists of a C++-based compiler along with a C runtime library.
In addition, we have implemented the four application scenarios we
discuss in §4 in the form of (i) Python scripts for the two proof-of-
concepts (BPF and Firewall); (ii) a C++ compiler to translate Bin-
PAC++ grammars into HILTI; and (iii) a Bro plugin in C++ that
(a) provides a runtime interface to BinPAC++ parsers and (b) com-
piles Bro script code into HILTI and executes it. HILTI, BinPAC++,
and the Bro plugin come with a total of about 850 unit tests ensur-
ing correctness. Unless indicated otherwise, our implementation
implements all functionality discussed in this paper, and we release
it to the community as open-source software under a BSD-style
license [6]. As a large part of the implementation represents an ap-
plication of well-known compiler techniques, we focus on some of
the more interesting aspects in the following.

4We currently exclude some rarely used constructs as well as a
small set of advanced functionality that does not have direct HILTI
equivalents yet. In particular, the compiler lacks support for Bro’s
when statement, which triggers script code asynchronously once
a specified global condition becomes true. We plan to add watch-
points to HILTI to support that functionality. Only few scripts make
use of that capability, most commonly for resolving DNS names.

global hosts: set[addr];

event connection_established(c: connection) {
add hosts[cidresp_h]; # Record responder IP.
}

event bro_done() {
for (i in hosts) # Print all recorded IPs.

print i;
}

(a) Bro event handlers in track.bro.

global ref<set<addr>> hosts = set<addr>()

[... Definitions for "connection" and "conn_id" ...]

hook void connection_established(ref<connection> c) {
local addr __t1
local ref<conn_id> __t2

__t2 = struct.get c id
__t1 = struct.get __t2 resp_h
set.insert hosts __t1

}

hook void bro_done() {
for (i in hosts) {

call Hilti::print (i)
}

}

(b) Compiled HILTI code (slightly simplified for readability).

bro -b -r wikipedia.pcap compile_scripts=T track.bro
208.80.152.118
208.80.152.2
208.80.152.3

(c) Output with a small sample trace containing 3 servers.

Figure 8: Bro compiler example.

Code Generation. The compiler hiltic receives HILTI ma-
chine code for compilation, as illustrated in Figure 2, which it
then compiles into LLVM’s instruction set. LLVM is an industrial-
strength, open-source compiler toolchain that models a low-level
but portable register machine. We also compile HILTI’s runtime li-
brary into LLVM’s representation, using the accompanying C com-
piler clang. We then link all of the parts together, first with a custom
linker (see below), followed by LLVM’s linker; and finally compile
the result into native machine code. Besides generating machine
code, LLVM also implements domain-independent code optimiza-
tions. All parts of the code generation can either take place stati-
cally, producing a native binary to execute; or just-in-time inside a
host application.

Linker. We add a specialized linker to our toolchain to support
the HILTI compiler through custom transformations at the LLVM-
level, enabling HILTI features that require a global view of all com-
pilation units. For example, we maintain thread-local state per vir-
tual thread and hence cannot leverage the corresponding pthread-
style functionality directly because it only separates the underly-
ing hardware threads. HILTI’s runtime associates with each vir-
tual thread a separate array that contains a copy of all thread-local
variables. However, as one compilation unit might access thread-
locals defined in another, only the link stage has the global view
necessary to determine the final layout of that array. Accordingly,
our custom linker first merges all thread-locals across units into a
single array structure, and then adapts all instructions to that ag-
gregate layout. We use a similar link-time mechanism to support
hooks across compilation units.

Runtime Model. With each virtual thread HILTI’s runtime as-
sociates a context object that stores all its relevant state, including
the array of thread-locals discussed above, the currently executing
fiber (for suspending execution; see §3.2), timers scheduled for ex-
ecution inside the thread, and exception status. Internally, we use
a custom calling convention for compiled functions (as well as the
runtime library) that passes the context object as an additional hid-
den object. HILTI currently propagates exceptions up the stack
with explicit return value checks after each function call, which in-
curs a slight overhead. In the future we might switch to C++-style
DWARF exceptions, which come with zero costs when not raising
any exception.

HILTI garbage-collects dynamically allocated memory via refer-
ence counting—a technique Bro has proven a good match for the
domain. While generally considered less efficient than mark-and-
sweep collectors [26], reference counting is not only less complex
to implement, but its incremental operation and short deallocation
times also fit better with real-time constrains. The HILTI compiler
emits reference count operations transparently during code gener-
ation as necessary. It does so rather freely at the moment, but we
plan to add an optimization pass that removes redundant counter
operations and also applies further optimizations similar to those
that ARC [3] deploys. Our implementation currently lacks a cycle
detector (as does Bro).

When implementing fibers, we considered several alternatives,
including CPS-conversion [10] and manually copying the stack on
demand. We settled on a setcontext-based scheme that proves
both simple and efficient for supporting the large number of context
switches that HILTI relies upon for implementing both incremen-
tal processing and virtual threads. The setcontext primitive
allows a program to temporarily switch its stack over to a self-
allocated memory segment, saving and later restoring processor
registers to continue at the original location. A challenge with that
approach lies in sizing the custom stacks correctly: if they remain
too small, they will overflow; if too large, they will waste mem-
ory. While LLVM’s code generator offers “segmented stacks” [12]
as a mechanism to start with a small stack and then grow dynam-
ically, this feature turns out complex, non-portable, and rather in-
efficient. Instead we follow the lead of Rust [8] and leverage the
MMU: we request large worst-case-sized memory segments with
mmap() and rely upon the MMU to not actually allocate physi-
cal memory pages until it sees accesses. That approach performs
well in practice: using libtask’s optimized setcontext imple-
mentation [2] along with a custom free-list for recycling stacks, a
micro-benchmark shows that the HILTI runtime can perform about
18 million context switches per second between existing fibers on
a Xeon 5570 CPU. It furthermore supports about 5 million cycles
per second of creating, starting, finishing, and deleting a fiber. We
also confirmed that the memory usage indeed corresponds to the
space in use, versus the amount allocated. We hence conclude that
our fiber implementation provides the necessary performance.

Runtime Library. The runtime library implements the more
complex HILTI data types—such as maps, regular expressions,
and timers—as C functions called out to by the generated LLVM
code. LLVM can inline function calls across link-time units and
thus may eliminate the extra overhead of these invocations. The
runtime library also implements the threading system with a corre-
sponding scheduler, mapping virtual threads to native threads and
scheduling jobs on a first-come, first-served basis. For functional-
ity that requires serial execution, the runtime provides a command
queue to send operations from arbitrary threads to a single dedi-
cated manager thread. HILTI uses this mechanism, for example,
for file output occurring from multiple threads concurrently. Gen-

erally, all runtime functionality is fully thread-safe, 64-bit code.
However, we have not yet focused on efficiency when implement-
ing runtime functionality. For example, we currently implement
the classifier type as a linked list internally, which does not
scale with larger numbers of rules. It will be straightforward to
later transparently switch to a better data structure for packet clas-
sification [22].

Bro Interface. When adding the Bro interface for compiling
BinPAC++ and scripts, we faced two main challenges: (i) we had to
hook the generated code into Bro’s processing at a number of points
across its code base; and (ii) execution needs to translate back and
forth between Bro’s internal representation of data types and those
of HILTI. For the former, we started with a Bro development ver-
sion based on release 2.2 that comes with an early version of a new
plugin interface, which enables us to load additional Bro function-
ality at runtime in the form of shared libraries. We extended that
interface to provide further hooks into the script infrastructure and
then implemented all HILTI-specific code as a plugin.

The translation between data types turned out to be more dif-
ficult. Internally, Bro represents all script values as instances
of classes derived from a joint Val base class (e.g., there is an
EnumVal, a TableVal, etc.). Unfortunately these instances are
not only used by the script interpreter itself, but also passed around
to most other parts of Bro’s code base. Therefore, even when we
replace the interpreter with our compiled code, to interface to the
rest of Bro—e.g., for feeding data into the logging system—we still
need to create instances of these value classes. Similarly, we also
need to convert Val’s into the corresponding HILTI representation
when generating events. Consequently, our HILTI plugin needs to
generate a significant amount of glue code, which comes with a cor-
responding performance penalty as we discuss in §6. In practice,
one would avoid this overhead by tying the two systems together
more directly.

6. EVALUATION
We now evaluate the HILTI environment by assessing the func-

tionality and performance of the applications discussed in §4. We
begin by summarizing our data and setup.

6.1 Data and Setup
To drive our applications with realistic workloads, we captured

two full-payload packet traces at the border gateway of the UC
Berkeley campus, exclusively containing HTTP and DNS traffic,
respectively. The HTTP trace comprises a total of 30 GB of data
in libpcap format, spanning 52 minutes of TCP port 80 traffic dur-
ing a recent weekday morning and representing a sample of 1/25 of
the link’s total connections on port 80 during that time.5 The trace
contains about 340K HTTP requests/replies between 35K distinct
pairs of hosts. The DNS trace comprises 1 GB in libpcap format,
spanning about 10 minutes of UDP port 53 traffic during a recent
weekday afternoon. Due to the lower overall volume of DNS, we
could capture all of the campus’ DNS during that interval. The
trace contains about 65M DNS requests/replies between 435K dis-
tinct host pairs. We captured both traces with tcpdump, which re-
ported no packet loss in either case. We chose the trace durations
as a trade-off between including significant diversity and keeping
their volume manageable for repeated offline measurements. We
note that in particular for DNS, the number of requests/replies con-
stitutes the primary driver for analysis performance, not raw packet
volume. We conduct all measurements on a 64-bit Linux 3.12.8

5We captured the trace on a backend system behind a front-end
load-balancer that splits up the total traffic on a per-flow basis [44].

system with two Intel Xeon 5570 CPUs, 24GB of RAM, and CPU
frequency scaling disabled.

For the applications involving Bro we slightly adapt some of
Bro’s default scripts—which generate all of Bro’s output files—
by backporting a few recent bugfixes to the version we used. We
also remove some minor dependencies on specifics of the built-in
parsers. For DNS we furthermore disable per-request expiration
timers, and for Bro’s standard HTTP parser we disable recovering
from content gaps; both features are not yet supported by our Bin-
PAC++ versions. We use the modified Bro versions for all runs so
that results are comparable across configurations. When measur-
ing execution performance (in contrast to validating correct oper-
ation), we disable Bro’s logging to avoid its I/O load affecting the
results; Bro still performs the same computation but skips the fi-
nal write operation. To measure CPU performance, we instrument
Bro to also record the time spent inside four different components
of the code base: protocol analysis, script execution, HILTI-to-Bro
glue code (see §5), and all remaining parts excluding initialization
and finalization code (which we refer to as “other” below).6 We
measure time in CPU cycles as retrieved via the PAPI library. Out
of necessity these measurements remain somewhat approximate:
(i) control flow within Bro is complex and one cannot always pre-
cisely attribute which subsystem to charge; and (ii) PAPI comes
with overhead and fluctuations that affect the results [46]. How-
ever, after performing a number of cross-checks, we are confident
that these measurements give us a solid qualitative understanding
on how HILTI performs relative to standard Bro.

6.2 Berkeley Packet Filter
We first verify that running the compiled filter from Figure 4

on the HTTP trace performs correctly. Instead of the private ad-
dresses we use real ones from the trace that trigger the filter for
about 2% of the packets. We link a basic libpcap-based driver
program written in C with the compiled HILTI code. The driver
reads the trace file inside a loop, calls the filter successively for
each packet and increases a counter for every match. We then im-
plement a second version of the driver that instead uses BPF to
perform the same filtering, and we find that both applications in-
deed return the same number of matches. To understand the rela-
tive performance of the two filter implementations, we measure the
CPU cycles spend inside the filtering code, finding that the HILTI
version spends 1.70 times more cycles than BPF. A closer looks
reveals that the HILTI-generated C stub is responsible for 20.6%
of the difference, leaving an increase of 1.35 times when ignor-
ing that (the runtime functionality that the stub facilitates remains
unnecessary in this case, and the compiler could indeed just skip
it). We deem the remaining difference acceptable, considering the
HILTI’s higher-level model in comparison to BPF’s internal repre-
sentation.

6.3 Stateful Firewall
We confirm the functionality of the stateful firewall application

by comparing it with a simple Python script that implements the
same functionality independently. We drive both instances with
the DNS trace, configuring them with a small example rule set and
feeding them with timestamp, source, and destination address for
each packet, as extracted by ipsumdump. Both HILTI and Python
versions parse the ipsumdump output into its components and
then pass them as input into their rule matching logic. We confirm
that the HILTI version produces the same number of matches vs.
6This also excludes compiling HILTI code at startup. While that
can take noticeable time, one could cache the machine-code for
reuse on later invocations.

#Lines http.log files.log dns.log
Std Pac Std Pac Std Pac

Total 338K 338K 273K 273K 2573K 2573K
Normalized 338K 338K 273K 273K 2492K 2492K

Identical 98.91% 98.36% >99.9%

Table 2: Agreement HILTI (Pac) vs. standard (Std) parsers.

non-matches. It also performs the task orders of magnitude faster;
however, given the slow nature of the Python interpreter, compar-
ing times does not reveal much here.

6.4 Protocol Parsing
We next examine BinPAC++ protocol parsers, using Bro as the

driver to feed them packet data. We take the HTTP and DNS
parsers as case-studies and compare their results with Bro’s stan-
dard, manually written C++ implementations.7 We confirm cor-
rectness by running both BinPAC++ and standard parsers on the
corresponding input trace and comparing the relevant Bro log files.
For HTTP, http.log records all HTTP sessions along with ex-
tensive meta information such as requested URL, server response
code, and MIME types of the message; and files.log records
further information on the message bodies, including a SHA1 hash
of their content. For DNS, dns.log records all DNS requests
with queries, types, responses, and more.

Our BinPAC++ parsers attempt to mimic Bro’s standard parsers
as closely possible, however small discrepancies in analysis seman-
tics remain hard to avoid for protocols as complex as HTTP and
DNS. Before comparing the log files, we hence first normalize them
to account for a number of minor expected differences, including
unique’ing them so that each entry appears only once.8

Table 2 summarizes the remaining differences. We find that for
the normalized versions of http.log, 98.91% of all of the stan-
dard parser’s log entries correspond to an identical instance in the
BinPAC++ version; 98.36% for files.log. About half of the
HTTP mismatches are due to a small number of “Partial Content”
sessions, for which the BinPAC++ version often manages to ex-
tract more information. The remaining discrepancies reflect fur-
ther semantic differences, often leading to different (or no) MIME
types for an HTTP body. These mismatches then transfer over to
the files.log, and we find neither parser consistently right in
these cases. The (low) number of mismatches remains on the order
of what we would expect for any two independent HTTP imple-
mentations. For dns.log we find almost perfect agreement, with
>99.9% of the entries matching, and the remaining deviations be-
ing due to minor semantic differences (e.g., Bro’s parser extracts
only one entry from TXT records, BinPAC++ all; the BinPAC++
parser does not abort as easily for traffic on port 53 that is not in
fact DNS). Overall, we conclude that the BinPAC++ results closely
match those of Bro’s standard parsers, which means we can pro-
ceed to meaningfully compare their performance, as they indeed
perform essentially the same work.

Figure 9 summarizes CPU times. The plot breaks down the time
spent inside Bro components when using its standard parsers vs.
the HILTI-based versions. The time for “Protocol Parsing” con-

7Note that we indeed compare against manually written C++ im-
plementations, not code generated by the classic BinPAC discussed
in [36]. While Bro uses BinPAC for some of its protocols, it does
not do so for HTTP and DNS.
8The normalization further includes adjustments for slight timing
and ordering differences, a few fields with size information that
the BinPAC++ parsers cannot easily pass on to Bro for technical
reasons, and formatting differences in field content.

0.0B 0.2B 0.4B 0.6B 0.8B 1.0B 1.2B 1.4B 1.6B 1.8B
CPU cycles

Standard

HILTI

Standard

HILTI

1567G683G 643G 241G

1580G852G 450G 21G 258G

712G177G 356G 180G

1173G469G 405G 81G 217G

HTTP

DNS
Protocol Parsing

Script Execution

HILTI-to-Bro Glue

Other

Figure 9: Performance of HILTI-based protocol parsers.

stitutes the key metric: the BinPAC++ parsers need 1.28 times
and 3.03 times more CPU cycles, respectively, when running on
the HTTP and DNS traces than the standard implementations. For
HTTP that means HILTI already comes close to the performance of
manually written C++ code. For DNS, the slowdown is more sig-
nificant, though we argue still acceptable given the current proto-
type state of our compiler implementation with its potential for fur-
ther optimization and tuning. We profiled the DNS analysis in more
detail on a trace excerpt and found two particular opportunities for
improvement. First, BinPAC++ parsers perform more memory al-
locations, and the effect is particularly pronounced for DNS: when
using the BinPAC++ parser Bro performs about 47% more memory
allocations (19% more for HTTP). The increase comes from fre-
quent instantiation of dynamic objects during the parsing process—
likely a similar overhead as classic BinPAC exhibits as well, and
with similar solutions [41]. Second, currently the BinPAC++ com-
piler always generates code supporting incremental parsing, even
though it could optimize for UDP where one sees complete PDUs
at a time (as Bro’s standard parser indeed does).

Figure 9 also shows the time spent inside the HILTI-to-Bro data
conversion glue: 1.3%/6.9% of the total cycles, respectively—an
overhead that would disappear if HILTI were more tightly inte-
grated into the host application. Interestingly, we also see in Fig-
ure 9 that for HTTP, Bro spends less time in script execution when
using the BinPAC++ analyzer, even though it follows the same code
path. We tracked down this difference to the standard parser gen-
erating a large number of redundant events related to file analy-
sis, which the BinPAC++ parser omits (about 30% more in total).
While the impact of these events on parsing and output remains
negligible, they lead to more load on the script interpreter. Recent
Bro versions have fixed this problem.

6.5 Bro Script Compiler
Turning to the script compiler application, we again first verify

its correct operation. Using the same methodology as with the pro-
tocol parsers, we compare the log files that the compiled HILTI
versions of the HTTP and DNS scripts produce with the output of
Bro’s standard script interpreter. Table 3 summarizes the differ-
ences running on the corresponding traces. We see an excellent
fit in all three cases. Inspecting the few cases where the two ver-
sions do not agree, we find that for http.log and files.log
almost all differences are due to fully insignificant output ordering
when logging sets of values—which our normalization cannot eas-
ily account for. For dns.log the only differences come from an
IPv6 address logged in a slightly different output format. Overall,
we conclude that the compiled HILTI code produces the same out-
put as Bro’s standard interpreter, and we thus confirm that HILTI’s
model can indeed capture a complex domain-specific language.

#Lines http.log files.log dns.log
Std Hlt Std Hlt Std Hlt

Total 338K 338K 273K 273K 2573K 2573K
Normalized 338K 338K 273K 273K 2492K 2492K

Identical >99.99% 99.98% >99.99%

Table 3: Output of compiled scripts (Hlt) vs standard (Std).

0.0B 0.5B 1.0B 1.5B 2.0B
CPU cycles

Standard

HILTI

Standard

HILTI

1562G683G 635G 244G

1810G698G 781G 76G 254G

709G175G 358G 176G

694G175G 243G 139G136G

HTTP

DNS Protocol Parsing

Script Execution

HILTI-to-Bro Glue

Other

Figure 10: Performance of scripts compiled into HILTI.

Next we turn to execution performance. As a simple baseline
benchmark, we first execute a small Bro script that computes Fi-
bonacci numbers recursively. The compiled HILTI version solves
this task orders of magnitude faster than Bro’s standard interpreter,
which demonstrates the potential for compiling scripts into ma-
chine code. However, this example represents the best case for
HILTI: it requires hardly any interaction between HILTI and Bro’s
C++ core, and it allows LLVM’s code generation to shine by pro-
ducing optimal machine code. As more realistic examples, Fig-
ure 10 compares execution performance with the HTTP and DNS
scripts, respectively. For HTTP, the HILTI version remains slightly
slower, requiring 1.30 times the cycles. For DNS, HILTI proves
6.9% faster. As with the protocol parsers, the glue code adds further
overhead—4.2% and 20.0% of total cycles, respectively—which a
fully integrated host application would not incur. Overall we con-
clude that the compiled HILTI scripts exhibit performance similar
to Bro’s existing scripting system. One could argue that compiled
scripts should decrease execution times more, compared to Bro’s
standard interpretation. While indeed we expect that further im-
provements of our toolchain will achieve that, we also point out
that it remains challenging to quantify the potential: with a high-
level scripting language, operations on data structures (e.g., hash
maps) and other runtime library functionality, including dynamic
memory management, account for a significant share of the work
load that can only improve to a certain extent. Furthermore, even
when interpreted, Bro’s statically typed language can execute much
faster than dynamically typed environments such as Python or Perl,
which would be infeasible to use for real-time network traffic anal-
ysis in the first place.

6.6 Summary
We have shown that (i) HILTI correctly captures the semantics

of all four application scenarios, from low-level protocol parsing
to complex high-level analyses; and (ii) its runtime performance
generally aligns with that of the existing systems. While some-
times slower, it remains on the order of what we expect for the
current state of the implementation, i.e., a 4-stage compilation pro-
cess (host application, HILTI, LLVM, machine code) only partially
optimized (LLVM) versus manually written production code. In-
deed, our toolchain does not yet exploit HILTI’s optimization po-
tential: it lacks support for even the most basic compiler optimiza-
tions, such as constant folding and common subexpression elimi-

nation at the HILTI level (e.g., the LLVM-level lacks the semantics
to identify subsequent lookups for the same map element, which
however would be easy to compress before compiling them down).

We have not yet pursued parallelizing the presented applications
inside HILTI, as that would involve a number of further aspects
in terms of analysis structure and evaluation, exceeding the scope
of this paper. However, we have verified HILTI’s thread-safety
guarantees, as well as correct operation of the scheduler, by load-
balancing DNS traffic across varying numbers of hardware threads,
each processing their input with the corresponding HILTI-based
parser. As expected, we found the same HILTI parsing code to
support both the threaded and non-threaded setups.

7. DISCUSSION
Safe Execution Environment. As a key design aspect, HILTI

provides a safe runtime execution environment that prevents unin-
tended data and control flows when facing unexpected input. For
example, HILTI’s instructions generally validate their operands to
avoid undefined behavior, such as out-of-bounds iterators; and the
memory management prevents dangling references. Furthermore,
by separating state between threads, HILTI provides a well-defined
setting for concurrent analysis: HILTI code is always safe to exe-
cute in parallel. While some of these safety properties come with
performance penalties, we deem them well worth their cost, com-
pared to the traditional alternative of writing C code that parses
untrusted input, potentially concurrently, in real-time.

Performance via Abstraction. We designed HILTI’s machine
model to preserve high-level domain semantics that offer extensive
potential for global, transparent optimization. While not yet a focus
of our prototype implementation, we expect HILTI to eventually fa-
cilitate a range of powerful code enhancements. Consider our two
Bro-based applications, protocol parsing and script analysis: taken
together, they effectively port the core part of Bro over to the HILTI
platform. While today parsing and analysis remain separate Bro
subsystems, HILTI allows us to reason about them simultaneously
inside a single model, with the opportunity to then optimize func-
tionality across their boundaries. For example, if a user does not
configure any Bro scripts that inspect bodies of HTTP messages,
HILTI could simply remove the code for parsing them in depth.

Generally, we see opportunities for automatic optimization in
four main areas. First, HILTI facilitates improving individual func-
tionality by tuning the implementation. As a simple example,
we plan to better adapt HILTI’s map type to real-time usage by
avoiding CPU spikes during hash table resizes [16]. Likewise, we
are considering JIT compilation of regular expressions, similar to
re2c [4]. HILTI allows to perform such fine-tuning “under the
hood” while transparently benefiting any host application.

Second, HILTI’s abstractions enable transparent integration of
non-standard hardware capabilities. Traditionally, integrating cus-
tom hardware elements (e.g., FPGA pattern matchers, dedicated
lookup modules, fast packet classification) into a networking appli-
cation requires significant effort to manually adapt the code. HILTI,
however, can switch to a different code path as suitable, either at
compile-time or dynamically during execution, without changing
the interface to the host application. For example, preliminary sim-
ulations show that HILTI’s hash tables map well to PLUG [13].

Third, HILTI’s execution model facilities compiler-level code
optimization by providing context for control and dataflow anal-
yses [27]. For example, state management can benefit from group-
ing memory operations for improved cache locality, according to
access patterns that the HILTI representation suggests (e.g., con-
tainers could structure memory operations with element expira-
tion times in mind). Also, optimizations can help remove over-

head coming with HILTI’s runtime model, such as skipping un-
necessary exception checks, moving bounds-checking from run-
time to compile time where statically safe, and optimizing memory
management and garbage collection (e.g., BinPAC++-style parsers
could often move intermediary heap objects to less expensive stack
storage). Another powerful technique concerns elimination of un-
needed code at link-time, as in the Bro example we sketch above:
the HILTI linker can remove any code (as well as state) that it can
statically determine as unreachable with the host application’s pa-
rameterization.

Fourth, HILTI has sufficient context available to automatically
infer suitable parallelization strategies for many networking appli-
cations. By analyzing data flows, potentially augmented with feed-
back from runtime profiling, it can leverage the typical unit-based
structure of network analysis tasks for scheduling them scalably
across CPUs; see below.

Global State. By design, HILTI does not provide truly global
state that concurrent threads can access directly—a choice that en-
ables safety guarantees and optimizations we deem worth the re-
striction. As a substitute, host applications can generally deploy
message passing for communication between threads, and poten-
tially designate a single “master” thread for managing state that
requires global visibility across the entire system.

In practice, however, we expect the need for global state to re-
main rare in HILTI’s target domain, as typical analyses tend to
structure their logic around inherent units of analysis—such as con-
nections, or IP addresses—with little need for correlation across
independent instances. As a simple example, consider a scan de-
tector that counts connection attempts per source address. As each
individual counter depends solely on the activity of the associ-
ated source, one can parallelize the detector by ensuring, through
scheduling, that the same thread carries out all counter operations
associated with a particular address. That thread can then keep a
local variable to record the current value. We envision such scoped
scheduling to become HILTI’s primary concurrency model, and we
refer to [14] for more exploration of this topic.

Porting Legacy Applications. We consider HILTI primarily a
platform for implementing novel host applications, for which it sig-
nificantly reduces the barrier for developing an efficient and robust
system. However, legacy applications can benefit from HILTI as
well, as long as the porting effort remains tenable. Generally, we
expect that existing systems will prove most amenable to leverag-
ing HILTI if they already represent their analyses in a structured,
customizable way. Indeed, all four of our example applications fall
into this category: they express their functionality in terms of ex-
pressions, rules, grammars, and scripts, respectively. Traditionally,
such applications compile their inputs into custom internal rep-
resentations before beginning their processing—a step that could
now target HILTI instead. We deem HILTI less promising, how-
ever, for porting efforts that involve significant hard-coded, low-
level logic, such as a manually written TCP stream reassembler.
While HILTI can certainly express such functionality—indeed, we
envision eventually providing this particular example in the form
of a HILTI library—it remains unclear if porting such code would
provide significant benefit, as to a large degree it simply reflects
translating code from one language into another.

8. RELATED WORK
By their very nature, existing abstract machine implementations

focus on specifics of their respective target domains, and to our
knowledge none fits well to the requirements of flexible, high-
performance network traffic analysis. This includes machine mod-
els underlying typical programming languages (e.g., JVM, Par-

rot VM, Lua VM, Erlang’s BEAM/HiPE [39]). Despite raising
the level of abstraction, these machines do not offer high-level
primitives to efficiently express problems of the domain. Conse-
quently, we leverage an existing low-level abstract machine frame-
work, LLVM, in our implementation.

In the networking domain, we find a range of efforts that share
aspects with our approach, yet none provides a similarly compre-
hensive platform for supporting a wide range of applications. Many
could however benefit from using HILTI internally. For example,
the C library libnids [1] implements basic building blocks com-
monly used by NIDS, paying particular attention to a design ro-
bust when facing adversaries and evasion [24]. We envision such
libraries to eventually use HILTI for their implementation. Do-
ing so would relieve them from low-level details (e.g., libnids is
not thread-safe and has no IPv6 support), and also benefit from a
tighter semantic link between host applications and library. Net-
Shield [31] aims to overcome the fundamentally limited expres-
siveness of regular expressions by building a custom NIDS engine
on top of BinPAC to match more general vulnerability signatures.
However, implementing the low-level parts of the engine accounts
for a significant share of the effort. Using HILTI primitives would
be less time-consuming and also enable other applications to share
the developed functionality. The Click modular router [28] allows
users to compose a software router from elements that encapsulate
predefined primitives, such as IP header extractors, queues, and
packet schedulers. Rather than mapping the custom configuration
language to the underlying C++ engine, Click configurations could
alternatively compile into HILTI. RouteBricks [18] is a multi-Gbps
distributed software router which uses techniques akin to HILTI’s
concurrency model: per-core packet queues enable a lock-free pro-
gramming scheme with good cache performance. HILTI can easily
express such per-flow analysis (within a single system) by rout-
ing related analysis to the same thread, and its threading model
allows for other scheduling strategies as well. NetPDL [40] is
an XML-based language to describe the structure of packet head-
ers. It decouples protocol parsing code from protocol specifics.
The language supports fixed and variable-length protocol fields as
well as repeated and optional ones. While NetPDL takes a con-
ceptually different approach than BinPAC, it uses similar build-
ing blocks and would nicely map to HILTI. Xplico [7] is a net-
work forensic tool written in C that ships with protocol analyz-
ers and manipulators.The HTTP analyzer, for example, reassem-
bles HTTP payload by writing the packet contents into per-flow
files on disk, which higher-level analyzers (such as webchat) then
re-read for further analysis. HILTI’s incremental and suspend-
able stream parsing makes it easier to implement such function-
ality efficiently. Software-defined networking (SDN) separates a
network’s device control and data planes, allowing operators to
program routers and switches; OpenFlow [33] provides a vendor-
agnostic interface to such functionality, and a number of higher-
level languages [21, 29, 19, 34] use it to control compatible hard-
ware devices. By adding an OpenFlow interface to HILTI, it could
become a corresponding backend to drive the software component
of such systems and dynamically control network policies based
on traffic analysis. NetVM [35] compiles Snort rules into a cus-
tom intermediary representation, and from there just-in-time into
native code. It routes packets through a graph of connected net-
work elements, each of which features a stack-based processor,
private registers, and a memory hierarchy. NetVM’s functionality
has a lower-level focus than HILTI because it primarily attempts
to achieve portability of signature matching. Contrary to the VM
isolation model of NetVM, HILTI’s compilation into LLVM code
enables late and global optimizations, whereas it appears difficult

to optimize across NetVM elements. Similar to our example in §4,
Linux has added support for JIT compiling BPF expressions into
native assembly [11]. FreeBSD 7 also includes experimental BPF
JIT support. Finally, there is a large body of work on accelerating
parts of the network traffic analysis pipeline with custom hardware
elements, targeting for example pattern matching (e.g., [42, 20]),
parallelization on GPUs (e.g., [45, 9, 23]), robust TCP stream re-
assembly [15], and high-speed lookup tables such as PLUG [13].
HILTI’s design allows to transparently offload specific computa-
tions to such specialized hardware when available.

9. CONCLUSION
We present the design and implementation of HILTI, a plat-

form for deep, stateful network traffic analysis. HILTI represents a
middle-layer located between a host application and the hardware
platform that executes the analysis. We argue that while networking
applications tend to share a large set of common functionality, they
typically reimplement it from scratch each time, raising the possi-
bility of falling into pitfalls that others have previously mastered.
HILTI bridges that gap by providing a common substrate to appli-
cations to support their implementation while facilitating reuse of
high-level components built on top of the platform. We developed
a prototype compiler that implements all of HILTI’s functionality,
including rich domain-specific data types, automatic memory man-
agement, flexible control flow, concurrent execution, profiling and
debugging support, and an extensive API for host applications. We
further built four example applications on top of HILTI that demon-
strate its ability to support a range of typical network analyses. We
plan to advance HILTI further into a platform suitable for opera-
tional deployment in large-scale network environments by exploit-
ing its full performance potential through transparent optimization
and integration of non-standard hardware elements. We also envi-
sion HILTI to become a platform for networking research by facil-
itating rapid prototyping of novel network functionality.

Acknowledgments
This work was supported by the US National Science Foundation
under grants CNS-0831535, CNS-0915667, CNS-1228792, and
CNS-1228782. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors or
originators, and do not necessarily reflect the views of the National
Science Foundation.

10. REFERENCES
[1] libnids. http://libnids.sourceforge.net.
[2] libtask. http://swtch.com/libtask.
[3] Objective-C Automatic Reference Counting (ARC).

http://clang.llvm.org/docs/
AutomaticReferenceCounting.html.

[4] re2c. http://re2c.org.
[5] Suricata source code - src/flow-hash.c.

https://github.com/inliniac/suricata/
blob/master/src/flow-hash.c.

[6] Web site and source code for HILTI and BinPAC++.
http://www.icir.org/hilti.

[7] Xplico. http://www.xplico.org.
[8] B. Anderson. Abandoning Segmented Stacks in Rust.

https://mail.mozilla.org/pipermail/
rust-dev/2013-November/006314.html.

http://libnids.sourceforge.net
http://swtch.com/libtask
http://clang.llvm.org/docs/AutomaticReferenceCounting.html
http://clang.llvm.org/docs/AutomaticReferenceCounting.html
http://re2c.org
https://github.com/inliniac/suricata/blob/master/src/flow-hash.c
https://github.com/inliniac/suricata/blob/master/src/flow-hash.c
http://www.icir.org/hilti
http://www.xplico.org
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006314.html
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006314.html

[9] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster.
SwitchBlade: A Platform for Rapid Deployment of Network
Protocols on Programmable Hardware. In Proc. ACM
SIGCOMM, 2010.

[10] A. W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

[11] J. Corbet. A JIT for packet filters.
http://lwn.net/Articles/437981/.

[12] S. Das. Segmented Stacks in LLVM.
http://www.google-melange.com/gsoc/
project/google/gsoc2011/sanjoyd/13001.

[13] L. De Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam. PLUG: Flexible Lookup Modules for
Rapid Deployment of New Protocols in High-Speed Routers.
ACM SIGCOMM Computer Communication Review,
39:207–218, 2009.

[14] L. De Carli, R. Sommer, and S. Jha. Beyond Pattern
Matching: A Concurrency Model for Stateful Deep Packet
Inspection. In Proc. ACM Computer and Communications
Security (CCS), 2014.

[15] S. Dharmapurikar and V. Paxson. Robust TCP Stream
Reassembly in the Presence of Adversaries. In USENIX
Security, 2005.

[16] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Operational Experiences with High-Volume Network
Intrusion Detection. In Proc. ACM Computer and
Communications Security (CCS), Oct. 2004.

[17] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Predicting the Resource Consumption of Network Intrusion
Detection Systems. In Proc. Recent Advances in Intrusion
Detection (RAID), 2008.

[18] K. Fall, G. Iannaccone, M. Manesh, S. Ratnasamy,
K. Argyraki, M. Dobrescu, and N. Egi. RouteBricks:
Enabling General Purpose Network Infrastructure. SIGOPS
Operating Systems Review, 45:112–125, February 2011.

[19] N. Foster et al. Frenetic: A High-Level Language for
OpenFlow Networks. In Proc. PRESTO, 2010.

[20] R. Franklin, D. Carver, and B. Hutchings. Assisting Network
Intrusion Detection with Reconfigurable Hardware. In Proc.
FCCM, 2002.

[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. ACM SIGCOMM Computer
Communication Review, 38:105–110, 2008.

[22] P. Gupta and N. McKeown. Algorithms for Packet
Classification.
http://yuba.stanford.edu/~nickm/papers/
classification_tutorial_01.pdf, 2001.

[23] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated Software Router. In Proc. ACM
SIGCOMM, 2010.

[24] M. Handley, C. Kreibich, and V. Paxson. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics. In Proc. USENIX Security, 2001.

[25] S. Ioannidis, K. Anagnostakis, J. Ioannidis, and
A. Keromytis. xPF: Packet Filtering for Lowcost Network
Monitoring. In Proc. IEEE HPSR, pages 121–126, 2002.

[26] R. Jones, A. Hosking, and E. Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management.
Cambridge University Press, 2011.

[27] K. Kennedy and J. R. Allen. Optimizing Compilers for
Modern Architectures. Morgan Kaufmann, 2002.

[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions on
Computer Systems, 18:263–297, August 2000.

[29] T. Koponen et al. Onix: A Distributed Control Platform for
Large-Scale Production Networks. In USENIX OSDI, 2010.

[30] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proc.
Symposium on Code Generation and Optimization, 2004.

[31] Z. Li et al. NetShield: Massive Semantics-Based
Vulnerability Signature Matching for High-Speed Networks.
In Proc. ACM SIGCOMM, 2010.

[32] S. McCanne and V. Jacobson. The BSD Packet Filter: A
New Architecture for User-level Packet Capture. In Proc.
USENIX Winter 1993 Conference.

[33] N. McKeown et al. OpenFlow: Enabling Innovation in
Campus Networks. ACM SIGCOMM Computer
Communication Review, 38:69–74, 2008.

[34] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A
Compiler and Run-time System for Network Programming
Languages. In Proc. POPL, 2012.

[35] O. Morandi, G. Moscardi, and F. Risso. An Intrusion
Detection Sensor for the NetVM Virtual Processor. In Proc.
ICOIN, 2009.

[36] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: A
yacc for Writing Application Protocol Parsers. In Proc. ACM
Internet Measurement Conference (IMC), 2006.

[37] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-Time. Computer Networks, 31(23–24), 1999.

[38] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood,
R. Pang, R. Sommer, and N. Weaver. Rethinking Hardware
Support for Network Analysis and Intrusion Prevention. In
Proc. USENIX Hot Security Workshop, August 2006.

[39] M. Pettersson, K. Sagonas, and E. Johansson. The HiPE/x86
Erlang Compiler: System Description and Performance
Evaluation. In Proc. FLOPS, 2002.

[40] F. Risso and M. Baldi. NetPDL: An Extensible XML-based
Language for Packet Header Description. Computer
Networks, 50:688–706, April 2006.

[41] N. Schear, D. Albrecht, and N. Borisov. High-Speed
Matching of Vulnerability Signatures. In Proc. Recent
Advances in Intrusion Detection (RAID), 2008.

[42] R. Sidhu and V. K. Prasanna. Fast Regular Expression
Matching using FPGAs. In Proc. IEEE FCCM, Apr. 2001.

[43] R. Sommer, V. Paxson, and N. Weaver. An Architecture for
Exploiting Multi-Core Processors to Parallelize Network
Intrusion Prevention. Concurrency and Computation:
Practice and Experience, 21(10):1255–1279, 2009.

[44] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and
B. Tierney. The NIDS Cluster: Scalable, Stateful Network
Intrusion Detection on Commodity Hardware. In Proc.
Recent Advances in Intrusion Detection (RAID), 2007.

[45] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis. Gnort: High Performance
Network Intrusion Detection Using Graphics Processors. In
Proc. Recent Advances in Intrusion Detection (RAID), 2008.

[46] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of
Performance Counter Measurements. In IEEE ISPASS, 2009.

http://lwn.net/Articles/437981/
http://www.google-melange.com/gsoc/project/google/gsoc2011/sanjoyd/13001
http://www.google-melange.com/gsoc/project/google/gsoc2011/sanjoyd/13001
http://yuba.stanford.edu/~nickm/papers/classification_tutorial_01.pdf
http://yuba.stanford.edu/~nickm/papers/classification_tutorial_01.pdf

	Introduction
	Sharing Functionality
	HILTI Abstract Machine Model
	Workflow
	Execution Model
	Profiling & Debugging
	Host Application API

	Application Exemplars
	Implementation
	Evaluation
	Data and Setup
	Berkeley Packet Filter
	Stateful Firewall
	Protocol Parsing
	Bro Script Compiler
	Summary

	Discussion
	Related Work
	Conclusion
	References

