
Lehrstuhl für Netzwerkarchitekturen

Fakultät für Informatik

Technische Universität München

Bachelor-Arbeit

Transparent Load-Balancing for Network

Intrusion Detection Systems

Matthias Vallentin

Aufgabensteller : Univ.-Prof. Anja Feldmann, Ph.D.

Intelligent Networks and Management of Distributed Systems,

Deutsche Telekom Laboratories / TU-Berlin

Betreuer : 1. Dr. Robin Sommer

International Computer Science Institute, Berkeley, USA

2. Holger Dreger

TU München

Abgabedatum : 15. November 2006

Eidesstattliche Erklärung

Ich versichere, dass ich diese Bachelor-Arbeit selbständig verfasst und nur die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

München, den 15. November 2006

Matthias Vallentin

Abstract

Since the amount of network traffic continuously increases, security analysis in large-
scale environments faces new challenges to keep pace with the rapidly growing traffic
volume. Network intrusion detection systems (NIDS) form an integral part to secure
the network perimeter by steadily inspecting network traffic in order to detect security
breaches. The traditional single-machine architecture of a NIDS cannot provide enough
resources to cope with the growing traffic volume. Vendors offer expensive solutions
based on custom hardware. Aimed at high-performance environments, these systems
seem to sustain the induced load, however, they fall short in providing a cost-effective
and flexible solution.

With our work, we set out to combine the performance of custom hardware with the
flexibility and cost-efficiency of standard hardware. By distributing the network traffic
stream over an expandable array of machines, we build a NIDS cluster suited for high-
performance environments. In their entirety, the machines form a transparent NIDS
cluster based on commodity hardware. To distribute the work load, each instance of
the NIDS conducts analysis on a disjunct subset of the network traffic. A key challenge
remains the exchange of lacking decision context. Facing this challenge, we discuss
important design guidelines for NIDS clusters that promote the construction of effective
implementations for practical use.

Furthermore, we thoroughly evaluate our cluster with respect to accuracy and perfor-
mance. Having a reliable testbed in place, we perform various measurements which yield
insightful results. Based on our observations, we draw the conclusion that our approach
provides a viable solution for large-scale networks.

This thesis begins with a recapitulation of basic concepts of network intrusion de-
tection. Particularly, we emphasize the main subject of our studies, the open-source
NIDS Bro. After presenting its architecture and communication framework which our
work inherently relies on, we highlight challenges that high-performance environments
pose. Thereafter, we analyze objectives and mechanisms relevant for transparent load-
balancing. Finally, we present our transparent load-balancing NIDS cluster, operating
in a large-scale research network at the Lawrence Berkeley National Laboratory.

Zusammenfassung

Das ständig wachsende Datenvolumen stellt für die Sicherheitsanalyse in leistungsstarken
Gbps-Netzwerken neue Herausforderungen dar. Network Intrusion Detection Systeme
(NIDS) bilden dabei einen wesentlichen Bestandteil zur Sicherung des Netzwerkes, in-
dem sie den Netzwerkverkehr hinsichtlich bösartiger Aktivitäten überwachen. In Umge-
bungen mit hohem Datenaufkommen haben bisherige Ansätze, deren Architekturen auf
Einzelbetrieb ausgelegt sind, ihre Grenzen erreicht. Um der unzureichenden Rechenka-
pazität entgegen zu wirken, bieten Hersteller meist sehr teure, speziell zugeschnittene
Hardware an. Abgesehen vom hohen Preis bieten diese Systeme nur unzureichende Flex-
ibilität für die Dynamiken von Hochleistungsnetzwerken.

In dieser Arbeit stellen wir Methoden zum Clustering und Load-Balancing von NIDS
auf Standard-Hardware vor, die wir am Beispiel des open-source NIDS Bro in die Praxis
umsetzen. Wir versuchen, die Synergien aus der Kombination der Performance von
Spezialhardware mit der Flexibilität und den Preisvorteilen von Standardhardware aus-
zunutzen. In diesem Zusammenhang entwickeln wir einen NIDS-Cluster, indem wir
den Netzwerkverkehr auf mehrere Maschinen verteilen, die jeweils eine disjunkte Teil-
menge des Gesamtverkehrs analysieren. Kern unserer Untersuchungen stellt dabei die
effiziente Realisierung des Austauschs von Stateinformationen dar, die den einzelnen
NIDS-Instanzen bei ihrer Analyse fehlt.

Ferner führen wir eine intensive Evaluation unseres Clusters durch. Erkennungsge-
nauigkeit und Performanz stellen dabei wesentliche Aspekte unserer Messungen dar.
Unsere Ergebnisse zeigen, dass unser Ansatz tatsächlich eine brauchbarere Lösung für
große Gbps-Netzwerke bietet.

Zu Beginn unserer Arbeit stellen wir grundlegende Konzepte von Network Intrusion
Detection dar. Insbesondere gehen wir konkret auf das Bro NIDS ein, das wir als
Ausgangspunkt für unsere Arbeit verwenden. Nachdem wir die Architektur und das
Kommunikations-Framework behandelt haben, widmen wir uns den Herausforderungen
von Hochleistungsnetzwerken. Im Anschluss entwickeln wir Konzepte und Mechanismen
für transparentes Load-Balancing, die wir mit unserem NIDS-Cluster umsetzen. Ab-
schließend evaluieren wir unsere Implementierung. Unser NIDS-Cluster ist mittlerweile
in die Netzwerk-Infrastruktur des Lawrence Berkeley National Laboratory integriert.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 2

2 Network Intrusion Detection 3

2.1 Network Security . 3

2.1.1 Policy and Mechanism . 3

2.1.2 Threat Model . 3

2.2 Network Intrusion Detection . 5

2.2.1 Architecture . 6

2.2.2 Detection strategies . 7

2.2.3 State . 8

2.2.4 Trade-Offs and Limitations . 8

2.3 Bro System . 9

2.3.1 Architecture . 10

2.3.2 Independent State . 11

2.4 High-Performance Environments . 12

2.5 Related Work . 13

3 Transparent Load-Balancing 17

3.1 Motivation . 17

3.2 Objectives . 18

3.2.1 Transparency . 18

3.2.2 Scalability . 20

3.3 Mechanisms . 21

3.3.1 Load-Balancing . 21

3.3.2 Communication . 24

3.4 Bro Cluster . 26

3.4.1 Lawrence Berkeley National Laboratory 26

3.4.2 Cluster Hardware . 27

3.4.3 Bro Configuration . 28

3.4.4 Practical Hurdles . 32

3.4.5 Summary . 36

i

Contents

4 Cluster Evaluation 37

4.1 Methodology . 37
4.2 Testbed . 38
4.3 Measurements . 38

4.3.1 Accuracy . 38
4.3.2 Performance . 40
4.3.3 Summary . 43

5 Conclusion 45

5.1 Summary . 45
5.2 Outlook . 46

ii

1 Introduction

1.1 Motivation

Network intrusion detection systems (NIDS) monitor the network traffic in order to
detect malicious activities and deviations from the site’s policy. The effectiveness of
a NIDS is not only determined by the sophistication of the analysis but also by the
available system resources. High-performance NIDSs face ambitious challenges to cope
with the constant increase of data volume. Conventional architectures which are limited
to operate on a single machine now exceed their resource limits in terms of CPU power
and packet capturing performance. If the analysis cannot keep up the induced network
load, the resulting packet drops significantly worsen the detection rate of NIDSs.

The volume of network traffic is continuously growing. To thwart scalability limi-
tations, vendors provide closed-source solutions based on expensive custom hardware.
Despite improved performance, their inflexibility and high costs leave them as a second
choice.

Our work presents a load-balancing NIDS cluster on commodity hardware as a fruitful
alternative which combines the performance of custom solutions with the flexibility and
cost-efficiency of standard hardware. To distribute the work load across an expandable
set of NIDS instances, the incoming network packet stream is divided into slices of
manageable size, whereas each instance performs individual analysis on a disjunct subset
of the entire traffic. Clearly, the price for this type of load-balancing is the lack of valuable
decision context on each instance.

A key challenge is to distribute the processing over multiple instances while at the same
time maintaining the accuracy and depth of analysis a single NIDS could in principal
achieve. To this end, a NIDS usually employs a communication sub-system enabling
individual instances to exchange information in order to augment their limited view
with the lacking context.

In this thesis, we set out to build a transparent cluster for network intrusion detection
systems, i.e. a NIDS that appears to be a single entity, but in fact is a set of nodes,
each processing a subset of the entire work. While most NIDSs only correlate high-
level information that is already coined with the site’s policy, we tackle the problem one
step lower: leveraging the flexible communication framework of the open-source NIDS
Bro, we build a load-balancing cluster in which every node is equipped with the same
fine-grained decision context.

Our target environment is the Lawrence Berkeley National Laboratory, where our
cluster has now replaced the hitherto existing setup. Moreover, our cluster extensions
to the Bro NIDS will be part of the official Bro distribution.

1

1 Introduction

1.2 Outline

The remainder of the thesis is organized as follows.

Chapter 2. The second chapter gives an overview about basic concepts of network intru-
sion detection. We explicate necessary terminology and familiarize the reader with
the topic. Further, we present the subject of our studies, the open-source NIDS
Bro with its flexible communication framework which we take as starting point for
our work. Before discussing related work at the end of this chapter, we highlight
the challenges that NIDS face in high performance environments.

Chapter 3. In the third chapter, we introduce transparent load-balancing. After outlining
objectives of transparent load-balancing, we turn to prolific mechanisms which
can be employed in high-speed environments. The remainder of this chapter is
devoted to our concrete realization of the outlined goals: introducing our Bro
cluster, an array of expandable machines performing distributed analysis. Through
the discussion we sketch practical hurdles we encountered and provide adequate
solutions where possible.

Chapter 4. In the fourth chapter, we conduct the evaluation of the Bro cluster. To this
end, we use a captured trace to instrument the accuracy and performance of our
cluster. We start with an investigation of the accuracy and then turn to a detailed
performance analysis.

Chapter 5. In the last chapter, we recapitulate our work and provide concluding remarks
with an outlook to future work.

2

2 Network Intrusion Detection

This chapter presents the fundamentals of network security related to network intrusion
detection. As we set out to construct a NIDS cluster, it is important to understand core
concepts of network intrusion detection. Moreover, we pave the way for comprehending
relevant aspects of load-balancing in the next chapter.

After introducing basic concepts of network security in §2.1, we give an overview of
network intrusion detection in §2.2. In section §2.3, we introduce the open-source Bro
NIDS which is the main subject of our studies. Thereafter, we present characteristics of
high-performance environments in §2.4, followed by a discussion of related work in §2.5.

2.1 Network Security

Computer security and in particular network security is based on three pillars: confiden-
tiality, integrity, and availability [Bis03]. The interpretation of these vary and depend
on the given environment. Further, the customs of a particular organization tailor their
meaning.

2.1.1 Policy and Mechanism

Since the definition of benign and malicious behavior may differ across different sites,
the decision whether a security breach took place depends on the site’s security policy. A
security policy is a manifestation of “what is, and what is not, allowed” [Bis03]. Ideally,
policies are formulated mathematically, as a set of allowed and disallowed states, to be
as precise as possible. Yet policies are mostly presented in colloquial language which
leads to ambiguity.

To enforce a security policy, a security mechanism provides a “method, tool, or proce-
dure” [Bis03]. On the one hand, mechanisms can be nontechnical, for example requiring
a proof of identity to continue with a particular action. On the other hand, mechanisms
can be technical, such as applications controlling access to restricted areas or systems. In
practice, security devices often immingle policy and mechanism. These implicit declara-
tions of a policy are often hard to comprehend because the introduced policy may seem
too diffuse and ambiguous. A clear separation from policy and mechanism is essential
to achieve a flexible configuration of security devices [TS02].

2.1.2 Threat Model

Already the “potential” violation of security is considered as a threat [Bis03]. It is not
necessary that a breach actually took place to refer to a threat. Rather, every possi-

3

2 Network Intrusion Detection

ble action violating the security policy is considered as a vulnerability. An attack or
intrusion is an action performed by an attacker or intruder trying to exploit a vulnera-
bility [Som05].

To quantify the extent a breach of security dimensions implies, one has to under-
stand what to defend against and what to protect. The impact of a successful intrusion
depends on the involved severeness. For example, the disclosure of personal identity
information or other sensitive data can entail embarrassing newspaper articles, causing
loss of reputation with high monetary consequences. However, non-critical information
leakage might not impose any consequences at all.

Therefore, one has to get a picture of the enemy. Who are the bad guys? What are
their incentives?

Historically, the majority of network attacks were performed by individuals against a
single well-known target. Vandals demonstrated their programming prowess to attain
respect in the underground community. These directed attacks were mostly conducted
manually, with a certain amount of interactivity needed in order to succeed. The con-
tinuous growth of the Internet leveraged the spread of manifold attack tools, enabling
even non-skilled people to launch sophisticated attacks. Most of these toolkits include
automated attack sequences, facilitating the application for script kiddies who lack the
capability to perform the attacks manually.

Nowadays, we observe a shift in motivation of malicious activity leading towards orga-
nized crime. This “cyber warfare” causes damage in a much higher order of magnitude.
Crooks recently figured out how to make money with network attacks, for example by
selling infected computers (also “zombies” or “bots”) in order to perform DDOS attacks
and sending spam. Their economic incentives fuel innovative approaches with an in-
creasing degree of sophistication. Barford and Yegneswaran [BY06] set up the thesis
that today’s predominant reactive approaches to secure networks are not sufficient any-
more, and more proactive methods are essential to get this problem under control.

Unsolicited mal icious software, referred to as malware1, that damages or infiltrates a
computer has evolved continuously with big pace over the past years. Malware employs
obfuscation techniques like polymorphism [KRVV04] and metamorphism [Szo05] to hide
the original malicious intent of the code. But even software with benign intent, such as
Skype [Sky], adopts similar techniques to escape from firewalls and systems responsible to
surveille the network. This makes it an especially difficult and subtle affair to distinguish
between malicious and benign.

Not only does the sophistication of attacks raise, but also the increasing volume,
dynamics and complexity poses new challenges on the defending side. Particularly the
high work load motivates us to create both robust and accurate network protection
systems.

1A classification of malware is not in the scope of this thesis, yet a detailed terminology is explicated
in [Szo05].

4

2.2 Network Intrusion Detection

Figure 2.1 Different deployment schemes.

Internet

LAN

LAN

LAN

FIrewall

NIDS

Tap

(a) Classical NIDS.

Internet

LAN

LAN

LAN

FIrewall inline NIDS

(b) Inline NIDS.

2.2 Network Intrusion Detection

The growing tendency of automated and undirected network attacks render manual
forms of auditing ineffective. Therefore an automatic system, an Intrusion Detection
System (IDS), aids in detecting intrusion.

In the following, we introduce required terminology orientated at [Som05]. Primary
source of a Network Intrusion Detection System (NIDS) is network traffic. As opposed
to a NIDS, the scope of a Host Intrusion Detection System (HIDS) is limited to the
analysis of singular hosts. It is further possible to build hybrid systems, for example by
enriching a NIDS decision context with host-specific information [Bro]. Our work resides
at network level, hence we focus on NIDSs throughout the remainder of the thesis.

A NIDS raises an alert when it thinks that it detected a security breach. Alerts are
either presented textual, embodied in log files, or displayed via a graphical user interface
(GUI). The notifications can then be dissected by a human analyst or an automatic post-
processing facility. A correctly identified intrusion is termed as a true positive, whereas
a reported false alarm manifests as a false positive. If the NIDS does not recognize
an ongoing intrusion, we face a false negative. But if it correctly remains calm when
no breach occurred, we encounter a true negative. It is important to note that these
definitions depend on the site’s policy and do not represent an absolute classification
[Som05]. As an example, certain activity can yield a true positive on one site’s policy,
but may be legitimate behavior on other sites, thus yielding a false positive with an
identically configured NIDS.

In a passive setup, the NIDS monitors traffic using a network tap, visualized in Fig-
ure 2.1(a). In contrast, traffic can also flow directly through a NIDS as depicted by
Figure 2.1(b). Such a system is called an in-line NIDS or Network Intrusion Prevention
System (NIPS). All NIPS are by definition active as they can inspect every network
packet and —if no malicious activity found— put it back on the wire. Even so a NIDS
can be active and react on dangerous activities, e.g. dynamically block network traffic
that it believes to be malicious.

5

2 Network Intrusion Detection

Ideally, intrusions are detected and even blocked before they reach their target. Most
of the commercial products today name themselves NIPS to advertise their additional
capability of stopping intrusions. Moreover, the reputation of intrusion detection systems
has decreased by reason of the disputed Gartner report [Sti03]. The report demonstrated
the limitations and drawbacks of intrusion detection and the reasons why intrusion pre-
vention is a fairly better method of securing a network. Vendors quickly adapted their
product descriptions according to the report. Even non in-line systems have been re-
branded to survive at the market. Due to the ambiguity of the term intrusion “pre-
vention”, we prefer the term in-line NIDS when referring to a system that follows the
pristine intent of a NIPS.

2.2.1 Architecture

Conceptually, a NIDS is not a single monolithic box, but rather consists of modular
components. In order to distribute instances of components in §3, we first have to
understand what types of components exist. Since the discussion of components often
implies aspects of the detection strategy [Bac00], a revised model has been introduced
in [Som05]. This refined abstraction includes five types of components as shown in
Figure 2.2:

Collector. Providing an interface to access one or more data sources, the collector ag-
gregates data and sends it to the detection engine. Most NIDSs operate on a raw
packet stream, usually forwarded to the collector from a network tap.

Detector. The very heart of the NIDS is the detector which performs detection. Feeded
with the data provided by the collector and storage component, it generates alerts
when it believes to disclose malicious activity.

User Interface. The user interface is required for any form of interaction with the user.
It reports alerts, provides a control interface, and enables the user to weave the
site’s policy into the NIDS.

Storage. Data such as suspicious activities or even successful intrusion can provide valu-
able insight for forensic analysis and qualify hence for persistent storage. Either
the detector or the user interface can access the storage component. Frequently, a
database system is employed to increase storage performance.

Responder. Revealed intrusions can trigger reactive responses in order to prevent sub-
sequent attacks that further compromise the system. For example, connectivity
dropping is an active countermeasure to dike further damage. Moreover, a response
can also be generated manually through the user interface.

Especially in large-scale installations, components may be instantiated more than
once and can be physically distributed across the site. However, all components are
usually accommodated in one single piece of software. As we target high-speed environ-
ments, replication of particular components becomes inevitable to thwart performance

6

2.2 Network Intrusion Detection

Figure 2.2 Components of a NIDS identified by [Som05].

Storage

Responder

Collector User InterfaceDetector

Communication

degradation [TS02]. Separated components, however, need to communicate in order to
exchange information. To this end, a modular NIDS has to feature a communication
sub-system (see §3.3.2).

2.2.2 Detection strategies

A NIDS employs one or more detection strategies2. Many different strategies have been
examined in literature so far, but according to [Som05], they can be narrowed down to
misuse detection, anomaly detection, and specification-based detection. We sketch each
of them as follows.

Misuse Detection. A system based on misuse detection recognizes events indicating known
attacks that are looked up in a library of attack patterns (or rule set [Bis03]). When
such a pattern successfully matches in the network stream, a potential intrusion is
reported. Ideally, the supplied library of attack patterns can even detect previously
unknown attacks by learning from the past. Since the attack pattern library is the
system’s heart, it has to be carefully maintained and constantly kept up to date.

Anomaly Detection. Anomaly detection systems seek for unexpected behavior that could
be evidence of an intrusion. For this purpose, they are equipped with metrics of ex-
pected behavior. Any significant deviations from the metrics raise an alert. In prac-
tice, anomaly detection alone is very prone to false positives [Som05], but has re-
ported to work successfully in well-defined application domains [KV03, KMVV03].

Specification-based Detection. In contrast to misuse detection, specification-based sys-
tems define explicitly allowed behavior. Other observed behavior than the speci-
fied is interpreted as a violation of the site’s policy. Given that specification-based
detection is the inverse of misuse detection, both approaches are equal in terms
of their expressiveness. In operational environments, it is rather impractical to
specify a complete set of benign events. Nevertheless, there are some practical
applications specifying allowed communication behavior. As an example, firewall

2Bishop refers to them as models [Bis03].

7

2 Network Intrusion Detection

rules [CBR03] attest which hosts are allowed to establish connections to other
hosts.

2.2.3 State

In order to make a decision, a NIDS needs to rest on decision context. The more context
a NIDS can incorporate, the more reliable it can conduct network analysis. There are
various sources to gather decision context from. For example, one can feed the NIDS
with information about the network topology. Yet the most context is accumulated by
the NIDS itself during runtime, as its own dynamic view of the network. This view of
the current communication in the network is referred to as state. State continuously
changes and evolves over time as the communication in the network does.

A stateful NIDS incorporates various types of state, whereas a stateless NIDS regards
each packet on its own as a self-contained unit of analysis. Historically, a clear distinction
between stateful and stateless network intrusion detection could be made. Nowadays,
all major NIDS operate stateful, yet differ in the magnitude of state they accommodate.

Our work is inherently based on the exchange of state. We construct a transparent
NIDS cluster in §3, where each node performs analysis on a subset of the entire network
traffic and thus holds only a fraction of the total available state. To get picture of the
entire network communication, each node shares its own isolated perception with the
other nodes.

We now present a few common types of state [Som05]. One type is connection state.
Thereby, meta information of every active connection is stored, for example the address
of the connection origin and destination, the duration, payload volume, and current
handshake status. It is also possible to treat state as per-host state by storing all con-
nection attempts for a given originator address. In §3.4.3, we examine this type of
state as part of a scan detector in detail. Further, signature state embodies the current
progress of a signature match. Because of their high expressiveness, many NIDS allow
the representation of signatures in regular expressions. However, matching hundreds of
signatures simultaneously can potentially lead to state explosion due to the exponential
growth of the underlying DFA [HU79].

In addition to the state gathered by itself, a NIDS can be supplied with external con-
text to include host-based analysis [Bro]. Valuable information that cannot be detected
on the network, such as operating system internals or decrypted data, greatly enhance
the decision context of a NIDS.

2.2.4 Trade-Offs and Limitations

Network intrusion detection systems are confronted with fundamental trade-offs and
limitations. In the following, we recapitulate inherent basic constraints that affect the
deployment of every NIDS in high-performance environments [Som05]. We also sketch
how these constraints can impact a NIDS cluster.

Effectively deploying a NIDS is expensive. Not only the initial setup generates costs,
but constant updates for the system and maintenance have to be taken into account,

8

2.3 Bro System

too. Moreover, analysts need a thorough understanding of the system’s output in order
to advise appropriate actions. Often, most of these implicit costs are forgotten, con-
sequently reducing the NIDS’s benefit and value. Note that security is not a buyable
product, but rather a continuous process. In terms of a NIDS cluster, cost-effectiveness
can be achieved by employing standard hardware instead of expensive custom hardware.
On the other hand, the higher administrative complexity a cluster imposes has also to
be respected.

A fundamental limitation of NIDSs pose their false positive rate, that is, the proportion
of false positives to true positives. Practice shows that the immense volume of benign
data input too often yields too many false positives, thereby flooding the analyst with
irrelevant output. Even worse, concealing intrusions by deliberately generating false
positives exhibits an attack vector at the system itself, rendering it ineffective. The cause
of a high false positive rate is usually a mismatch between the configured NIDS policy and
the site’s policy. As outlined in §2.1.1, the site’s policy is commonly presented informally,
lacking mathematical precision which complicates the integration into the NIDS. The
resulting ambiguities implicate a high number of false positives. In addition, not many
NIDSs offer a flexible configuration interface to incorporate a detailed mathematical
representations of the site’s policy. In context of a NIDS cluster, state propagation can
significantly impair the detection rate. Due to missing or delayed arrival of decision
context, a cluster node could make a wrong decision that would not have been made
with full decision context. It is hence important to equip each node with the required
amount of state and reduce state propagation latencies to a minimum.

The vulnerability of the NIDS itself imposes further limitations. From the attacker’s
perspective, evading the NIDS by delusion or subterfuge is an attractive means to conceal
malicious activities and remain undetected. Various ways to bypass a NIDS have been
debated in [PN98, HKP01, SP03]. Another attack vector form denial-of-service (DoS)
attacks. Every NIDS faces hardware constraints in terms of CPU and memory. If an
attacker manages to induce a very high resource consumption on the system, it will
eventually crash or at least miss a subset of activities. Therefore, attack resilience is an
important factor which has to be addressed in the early design phase of a NIDS. When
devising a NIDS cluster architecture, it is import that the architecture itself does not
expose any new exploitable attack vectors. For example, if one cluster node can be easily
overflowed, the entire system is rendered ineffective.

2.3 Bro System

In the following, we introduce the NIDS we use throughout our studies. Not only the
flexible communication sub-system that we present in §2.3.2 motivates our choice, but
also the direct contact to the developers allows us to quickly report bugs and gain insight
of the system’s internals.

9

2 Network Intrusion Detection

Figure 2.3 Architecture of the Bro [Som05].

Event control

Event Engine

 Event stream

Real−time notification

Packet filter

Policy script

Filtered packet stream

Packet stream

Network

Policy Layer

Packet Capture

2.3.1 Architecture

Bro [Pax99] is a very flexible open-source NIDS designed to operate in high-speed and
large-volume environments. The author of Bro is Vern Paxson, still primarily involved
in the development. As opposed to many other NIDSs, it is not limited to pursue only
one detection strategy. The implementation of a specific strategy is independent of Bro’s
policy-neutral core. Major design principles are (i) high-speed, large volume monitoring,
(ii) no packet filter drops, (iii) mechanism separate from policy, and (iv) resistance
against evasion attacks, directed at the monitor itself.

To achieve these goals, Bro’s system structure is divided into layers, as demonstrated
in Figure 2.3. The lowest layer contains the most amount of data. When going higher
up through the layers, the stream of data declines. A static BPF expression [MJ93]
pre-filters the raw packets incoming the network interface. Leveraging libpcap [Lib], Bro
remains portable running on various Unix flavors. Another advantage libpcap entails
is that it reduces the traffic in the kernel. By applying a BPF expression, packets are
discarded even before the kernel hands them up to the user-space, thereby substantially
reducing the system load.

The filtered packet stream is passed to the event engine and generates policy-neutral
events. These events do not imply any embossing with the site’s policy (see §2.1.1). In
fact, they represent“abstractions of network activity at different semantic levels”[Som05].
Example events are TCP connection established, HTTP request, FTP data connection
expected, or POP3 login rejected.

Upon completion of the event engine’s processing, the event stream is handed up to
Bro’s policy layer. Using a specialized high-level scripting language, called Bro, the user
can weave the site’s policy into the Bro NIDS. The scripts hold event handlers that are

10

2.3 Bro System

executed when the corresponding event is generated. The code inside the event handlers
can execute arbitrary commands of Bro’s scripting language, e.g. raise alerts, log real-
time notifications to files, create new events, or even start external programs to counter
identified malicious activity.

In contrast to other NIDSs, Bro uses a connection (or flow) as main unit of analysis. A
TCP connection consists of the source and destination address as well as the originating
and destination port. Other protocols, such as UDP or ICMP, also possess a notion of
a flow.

Recently, Bro features the independent state [SP05] framework for distributed analysis.
It allows to share the hitherto volatile in-memory state among several instances of the
system. As we fundamentally rely on independent state in our work, we now give an
overview about its internals.

2.3.2 Independent State

Network Intrusion Detection Systems generally rely on managing a great amount of
state (see §2.2.3). This state represents the NIDS’s current view of the network commu-
nication. Unfortunately, the state resides in the volatile memory, exclusively accessible
to a single process on a single host.

As the volume in high-speed environments raises, the memory consumption of the
state increases in conjunction. Particularly the TCP connection states grow very fast.
It is therefore necessary to either reduce the amount of consumed memory, e.g. by
expunging state aggressively and improving state expiration heuristics, or to distribute
the analysis across multiple instances in order to keep more state in total [Som05]. If
the work load is split across n instances, ideally we have n times more resources. With
this form of load-balancing, we can perform deeper inspection. This is exactly what we
aim for: a load-balancing NIDS cluster thwarting scalability limitations by distributing
the analysis over an expandable set of nodes.

Independent state [SP05] allows us to share the internal, fine-grained state of a NIDS
among multiple instances. First, there is spatially independent state that can be trans-
fered from one instance to another concurrently running instance. Second temporally
independent state subsists even after the executing instance has exited. It can thereby
be shared by subsequently running processes.

With independent state, a plethora of new applications is possible, including (i) selec-
tively preserving key state across restarts and crashes, (ii) dynamic reconfiguration of
the NIDS on-the-fly, (iii) user-level state tracking over time to support high-level policy
maintenance, and (iv) detailed profiling and debugging [Som05].

Still the most interesting application independent state offers us is the flexible ways of
distributed load-balancing. Since analyzing a high-volume traffic stream is very difficult
for a single NIDS, distributed analysis opens a new dimension to mitigate this problem.
In order to manage the high volume, we spread the analysis across several instances, each
processing a disjunct subset of the entire traffic. Without any state sharing, valuable
context in the form of state is missing to the other instances. The framework provided
by independent state is able to disclose the state and make it available to other parallel

11

2 Network Intrusion Detection

Figure 2.4 Independent state integrated into Bro [Som05].

Real−time notification

Policy scripts

Policy Layer

Event control

Event stream

Packet stream

Network

Exchanged with peers

Event Subscriptions

Packet Filter

Configuration

User State

Connections

Packet filter

Event Engine

Packets

Events

running instances. Every instance still analyzes only a subset, but has the full decision
context. The goal hereby is to maintain the same depth of analysis one single instance
could principally achieve. We delve into this topic again in chapter §3.

The conception of state propagation is realized with a serialization framework. All
of Bro’s state can be converted in a self-contained serialized binary representation. Fig-
ure 2.4 depicts a breakdown of the different types of state that Bro exchanges. As il-
lustrated, two communicating Bro instances, in the following termed as peers, can share
core events, user-level events and user-level data.

2.4 High-Performance Environments

High-performance environments pose new challenges to the design and operation of a
NIDS. We put out the differences in contrast to traditional environments, summarizing
some key aspects relevant for network intrusion detection that have been intensively
discussed in [Som05]. Note that all these observations apply to large and open research
environments and not to private closed networks.

Policy. The site policy of most high-performance environments is derived from “terms of
use” (TOU) that users accept when accessing the network. Generally, the TOU
appear to be very liberal in research environments, because the network is an im-
portant tool for researchers. The intended use of the network is first enforced
by firewall rules and second surveilled by monitoring devices. Due to the liberal
and informally formulated constraints, the applicability of NIDS is limited. Users
not complying with the TOU are often detected by the consequences their at-
tack implies. For example, traffic patterns may change after setting up an illegal
FTP server. An inferred policy from implicit consequences of attack is termed as

12

2.5 Related Work

experience-based policy. This type of detection focuses primarily on internal hosts,
since (i) the aim is to protect internal hosts, (ii) it is possible to contact a local
administrator in charge, and (iii) tracking down external victims is impracticable,
as contacting the responsible persons in charge turns out to be very cumbersome
and often not effective.

Threats. Due to their size, large-scale environments face mostly undirected attacks. Their
incentive is to concentrate on big attacks. But also singular intrusions are sought
to be tracked down, since they may compromise critical selected targets. Although
individual intrusions pose a certain risk, they do not vitiate the network’s oper-
ation. Defending only against the “big fish” is a very pragmatic, but practicable
approach.

Undirected attacks imply two main threats: misuse of resources and worms. While
the former represents all kinds of malicious activities exploiting the available re-
sources, the latter has the potential to quickly infect a huge number of hosts within
minutes [SMPW04] and can thus harm the entire network. As public networks are
constantly suffering from attacks [PYB+04], particularly high-performance envi-
ronments are fruitful targets.

Traffic. As opposed to small environment, large networks exhibit a very divers traffic
pattern. The network’s application-mix, i.e., the “fractions that the major net-
work applications contribute to the total volume” [Som05], has a great effect on
the performance of NIDS. This is due to the fact that each application protocol
is analyzed to a different depth. Over time, the traffic follows strong time-of-
day and time-of-week effects. Furthermore, the prevalence of “heavy-tailed” data
transfers [WTSW97, FGW98] can constantly spawn sudden peaks of traffic vol-
ume. Thus, in high-performance environments a NIDS needs to robustly handle
not only the average case, but also the aforementioned frequently occurring bursts.

2.5 Related Work

The steadily increasing network volume motivates to focus on network intrusion detection
systems designed for high-performance environments. We leverage Bro’s independent
state frame-work to build a load-balancing NIDS cluster. Unlike other approaches that
correlate only high-level information such as logs or alerts, our approach is one step lower:
we equip every cluster node with the same policy-neutral state. At the same time, each
node analyzes only a subset of the entire traffic. Thus far, we have not encountered a
similar approach in the research community.

The idea to employ clusters for scalable network services, however, is not new. Fox
et. al mention several advantages clusters provide, including incremental scalability, high
availability, and the cost-effectiveness of commodity PCs [FGC+97]. Although NIDSs
are usually passive components, the identified advantages are also beneficial for such
systems.

13

2 Network Intrusion Detection

The performance of network intrusion detection has been extensively studied in the
past [PZC+96, SSMF03, SWF05, SF05]. All studies conclude that it is imperative to
cope with the induced load that the growing network traffic imposes. Schaelicke and
Freeland argue that system-level optimizations such as interrupt coalescencing and rule-
set pruning as well as architectural techniques can significantly improve performance
and reduce packet loss [SF05].

While previous work primarily focuses on the design of a NIDS cluster processing
front-end [SWF05, KVVK02], we look furthermore into the challenges that intra-NIDS
communication reveals.

Numerous different NIDSs are available today. The focus and range of application vary
for each system. To our knowledge, only a few systems feature a tunable and flexible
communication sub-system that we can leverage to build a NIDS cluster.

Snort [Roe99] is the most common and widespread open-source NIDS. The original
author of Snort is Martin Roesch, whose company Sourcefire Inc. now continues its
development and sells Snort-based appliances. Snort also runs on commodity hardware
and utilizes libpcap to enable platform independent packet capturing. The detection
engine is misused-based (see §2.2.2). Around a core of numerous signatures, various plug-
ins enhance its functionality. Contrary to Bro, Snort doesn’t feature a communication
framework enabling parallel processing. Alerts generated by multiple instances have to
be aggregated manually in order to gain an omniscient view of the network’s security
condition. Despite the lack of a communication sub-system, Kruegel et. al built a flow-
based load-balancer on top of Snort [KVVK02]. Unfortunately, this approach maintains
connection tables to forward packets belonging to the same flow to the corresponding
sensor. Further, it does not support inter-sensor communication.

The State Transition Analysis Technique (STAT) tool suite [VEK00] is a set of dis-
tributed intrusion detection tools developed by the Reliable Software Group at UCSB.
STAT uses a misuse-based detection strategy that understands intrusions as sequences of
attack scenarios modeled in a state transition diagram. It supports inclusion of network-
based, host-based, and application-based sensors. Thus, it is a hybrid intrusion detection
system (see §2.2). The MetaSTAT Infrastructure [VKB01] provides the communication
sub-system and control infrastructure to enable distributed coordination of STAT-based
applications. STAT-based tools fan out into {U,N,Net,Win,Web,Alert}STAT, each de-
signed for a different application domain. In particular, NetSTAT [VK99] is the network-
based component responsible for network communication. If it is impossible for the sys-
tem to detect an attack completely, the partially configured scenario containing state
information is propagated to other probes.

EMERALD [PN97] is highly-distributed hybrid intrusion detection framework devel-
oped by SRI International. It is designed to operate at large-scale enterprise networks
and is not freely available. The architecture of EMERALD uses a layered approach to
support hierarchical organization of monitors. Each monitor can subscribe to events and
propagate correlated results.

Prelude [BOG03] is distributed NIDS that relies on the Intrusion Detection Exchange
Format (IDMEF) [IDM] standard to exchange events. Several sensors are connected to
managers which process and correlate alerts. In a distributed setup, multiple managers

14

2.5 Related Work

can also act as relay managers that report to a central manager.
However, none of the existing approaches provided flexible enough means to share ar-

bitrary policy-neutral state. In the following chapter, we present our approach leveraging
low-level state propagation in order to create a transparent NIDS cluster.

15

2 Network Intrusion Detection

16

3 Transparent Load-Balancing

In this chapter we present our approach how to effectively conduct network intrusion
detection in high-performance environments. We introduce our motivation in §3.1. In
§3.2, we present objectives of transparent load-balancing. To achieve these goals, we
outline generic mechanisms in §3.3. We turn in section §3.4 to the minutiae of our work
which includes a description of our target environment, the details of our enhancements
of the open-source NIDS Bro, and a summary of our work.

3.1 Motivation

Our motivation is to build a transparent NIDS cluster, i.e. a load-balancing cluster of
NIDS instances that appears to be a single entity, but in fact is a set of nodes, each
processing a subset of the entire traffic.

As described in the previous chapter, NIDSs face various challenges that high-perfor-
mance environments impose. The traditional single-machine architecture of a NIDS
cannot provide enough resources to cope with the growing traffic volume. Vendors pro-
vide solutions on expensive custom hardware to tackle the new requirements. However,
closed-source solutions are inflexible and too costly.

To bypass resource limitations, a common practice of many sites to date is to analyze
only a fraction of the network traffic. The Lawrence Berkeley National Laboratory
(LBNL, [LBL]), for example, filters out HTTP traffic on their main NIDS instance,
because else the NIDS would not be able to cope with the induced load. An additional
second NIDS instance is then responsible for dedicated HTTP analysis. Contrary to this
approach, we want to analyze all network traffic in order to conduct effective and highly
flexible network intrusion detection.

An alternative approach would be to employ commercial off-the-shelf (COTS) hard-
ware and distribute the work load across an expandable set of NIDS instances, whereas
each instance performs individual analysis on a disjunct subset of the traffic. While the
available resources multiply with such an approach, each instance lacks valuable deci-
sion context (see §2.2.3). The NIDS instance itself has then to take responsibility for
propagating state information to other nodes to reconstruct the whole picture.

Unfortunately, most of today’s NIDSs lack the capability to restore the entire picture.
They cannot share the internal fine-grained state which remains volatile in the memory
of the NIDS. Once the NIDS terminates, this state is lost. Often, only high-level state
(state that has already been coined with the site policy such as logs, alerts, etc.), is
exchanged. To overcome this limitation, the independent state framework (see §2.3.2) has
been developed, allowing us to propagate the bulky fine-grained state between instances

17

3 Transparent Load-Balancing

of a NIDS. Independent state offers manifold applications, yet we focus in this thesis
only on distributed load-balancing.

While many NIDSs correlate only high-level information in a distributed NIDS setup,
our approach is one step lower: we leverage independent state to build a cluster in which
each node is equipped with the same decision context. Thereby, every node can rely on
the same policy-neutral decision context even though it analyzes only a subset of the
entire traffic. At the same time, we maintain the depth of analysis a single NIDS could
principally achieve without resource limitations.

Having independent state in place, we face various other challenges on our way to
build a transparent NIDS cluster which we now examine step by step throughout this
chapter. In the following section, we discuss principle objectives that should be aimed
at when conducting distributed network intrusion detection.

3.2 Objectives

In this section, we discuss goals of transparent load balancing. These goals should be
interpreted as theoretical design guidelines when building a distributed NIDS cluster.
Practical limitations often impede one or more of these goals, as we show in §3.3.

3.2.1 Transparency

An important goal of distributed systems is transparency. A load-balancing NIDS ap-
pears as transparent when we have the impression that we interact only with a single
NIDS. Clearly, transparency is only perceived from the user’s point of view. Behind the
scenes, the NIDS aggregates the relevant information from multiple sources. It hides
that its resources are distributed across several instances.

We need transparency since the characteristics of high-performance environments (see
§2.4) force us to rethink network intrusion detection in a new dimension. A NIDS
deployed in traditional environments would likely be overstrained if integrated in a large-
scale network. In the event that it could cope with the load, it would still fall short
in providing a tractable system. Conducting high-speed network intrusion detection
requires a certain degree of transparency in order to achieve tractability.

In literature, transparency fans out into various aspects, as shown in Table 3.1. While
distributed network intrusion detection in wide-area networks has to deal with a mul-
titude of these aspects, load-balancing NIDSs involve mainly replication transparency,
since we want to interact with a single system, and concurrency transparency, as the user
usually does not notice which data structures are shared among the NIDS instances.

Beside the enumerated aspects of transparency, we identified two other important
facets of transparency that are in particular relevant for load-balancing: user interface
transparency and accuracy transparency. After discussing these two aspects, we argue
why the remaining facets of transparency shown in Table 3.1 do not apply for load-
balancing NIDS in general.

A deployed NIDS requires continuous attention to examine alerts and tune system
parameters for maximum benefit. The user interface thus plays an important role in

18

3.2 Objectives

Table 3.1 Several aspects of transparency of a distributed system [TS02].

Transparency Description

Access Hide differences in data representation and how a resource is accessed.
Location Hide where a resource is located.
Migration Hide that a resource may move to another location.
Relocation Hide that a resource may be moved to another location while in use.
Replication Hide that a resource is replicated.
Concurrency Hide that a resource may be shared by several competitive users.
Failure Hide the failure and recovery of a resource.
Persistence Hide whether a resource is in memory or on disk.

terms of the system’s effectiveness [Som05]. There are many kinds of user interfaces for
a NIDS, ranging from ASCII files to sophisticated graphical interfaces [ACI, Kre05, HS01,
KO04]. The importance of transparency grows with the complexity of the environment.
The best distributed NIDS is no advantage if the analyst cannot cope with its output.
Therefore, it is crucial to provide a transparent user interface, allowing the user to
interact with multiple instances of the system through a singular channel. At the same
time, the user interface needs the flexibility to access the profound details of each node.
It is a tightrope walk to catch the optimal degree of transparency while concealing
irrelevant properties of the system.

Transparency can further be extended to the accuracy of a NIDS. The accuracy is
represented by the detection rate of intrusions, meaning the ratio between true positives
and actual intrusions [Som05]. Given that nodes have to exchange information to coor-
dinate, the detection rate is affected by the underlying communication framework. For
example, it is directly influenced by the speed messages need to travel to other nodes. If
state updates do not arrive fast enough, valuable decision context might lack and hence
impair the detection rate. Thus, a system whose detection rate does not pejorate in a
distributed installation is said to be transparent with respect to its accuracy. As detect-
ing intrusions is the very purpose of a NIDS, this aspect must be a priori an explicit
design goal.

User interface transparency and accuracy transparency are explicitly wanted, whereas
common interpretations of transparency generally do not hold for NIDS clusters. For
instance, Access transparency is not the primary concern of a load-balancing NIDS, since
byte order differences are not expected on cluster nodes because they usually employ the
same hardware. If cluster nodes lie next to each other, location and migration, and
relocation transparency are negligible aspects. From the operators point of view, failure
transparency accompanies the usability of the system, e.g. when a backup node takes
over the role of a defective node, thereby masking the failure. For load-balancing NIDSs,
persistence transparency is explicitly unwanted, because it is important to know whether
state information is already recorded to disk or still resides in the volatile memory.

It may further be tempting to blindly capsulate as much as possible from the user.
Sometimes, this is not a good idea. An example is the component which is responsible
for reporting system errors. We really would like to know where the error occurred to

19

3 Transparent Load-Balancing

take measures. Further, a high degree of transparency can negatively affect performance,
as concealment and aggregation consume additional resources.

3.2.2 Scalability

Large-scale networks exhibit very dynamic properties and pose new challenges for net-
work intrusion detection. In order to conduct effective network intrusion detection, we
set out to build a cluster of NIDS instances. One fundamental advantage of clusters
is their scalability : when the load offered to the system increases, an incremental and
linear increase in hardware can maintain the same per-user level of service [FGC+97].
Here, incremental means that the system has the ability to grow incrementally over time,
which is a major advantage as capacity planning for large-scale environments depends
on high number of unknown variables. Linear in this context means that the amount of
additional resources necessary is a linear function of the increase in offered load.

In literature, three different dimensions of scalability are differentiated [TS02]. First,
if we can easily add more resources upon discovering the existent resources are not
sufficient, the system is scalable with respect to its size. Secondly, if the resources may
lie far apart from each other, a system is said to be geographically scalable. And thirdly,
systems that are easy to manage even if they span many independent organizations are
administratively scalable.

Consider scaling with regard to size. If a NIDS exceeds its physical resource limits,
extending a single-architecture platform might be possible to some extent, but will even-
tually reach its physical constraints and be unable to cope with the load. To overcome
this limitation, monolithic approaches have to be abandoned in favor of clustered and
distributed architectures, not prohibiting further growth. Using cost-effective commod-
ity hardware yields an optimal cost/performance ratio. At the same time, the inherent
redundancy of clusters can be exploited to meet high availability and failure trans-
parency (see Table 3.1).

While geographical scalability introduces demanding challenges for distributed net-
work intrusion detection in wide-area networks, it can be neglected in the application
domain of load-balancing. In this case, resources lie next to each other and are not
confronted with the dynamics of wide-area communication.

Finally, a growing NIDS has to remain tractable and offer administrative scale. Not
only have the system’s internals an effect on administrative scalability, but also the
embedding of the system in its environment. Scaling NIDSs across multiple administra-
tively independent domains is a sophisticated task, involving many unsolved problems.
For instance, conflicting site policies can significantly hinder the applicability of a NIDS.

In this section, we framed objectives for load-balancing in network intrusion detection.
We identified transparency as an important goal to render distributed NIDSs tractable
in large-scale networks. Transparency includes various aspects, such as the user inter-
face and the accuracy of the NIDS. Another basic objective is scalability. Systems can
scale with respect to their size, their geographic expansion, and their administrative
complexity.

20

3.3 Mechanisms

Table 3.2 Classification of traffic division schemes.

Scheme Description

Static Match a fixed criterion.
Dynamic Match a varying criterion dependent on the incoming traffic.
Stateful Distribution relies on accumulated information.
Stateless Distribution does not require stored information.

Packet-based Consider a packet as unit of distribution.
Flow-based Consider a flow as unit of distribution.

Fair The division schemes achieves an equal distribution among all nodes.
Unfair The division schemes exhibits non-uniform distribution characteristics.

3.3 Mechanisms

This section presents prolific mechanisms of transparent load-balancing enabling us to
conduct effective analysis in practice. Thereby, we address the previously emphasized
design goals to come up to a viable solution for high-performance environments.

3.3.1 Load-Balancing

If a NIDS cannot process the incoming packet stream at full wire speed, buffers will
eventually lead to packet loss or at worst overflow and potentially crash the system.
Because packet loss can significantly worsen the attack detection, it must be avoided in
any case.

To this end, we employ load-balancing to distribute the vast load equally among several
nodes. On each node, an instance of a NIDS is performing analysis. The connected
instances of the NIDS form a NIDS cluster. Ideally, the available resources multiply in
such a cluster setup, meaning that we can toss in new nodes as soon as we realize that
existent resources are insufficient.

Subject of load-balancing is the incoming network packet stream which is partitioned
according to a division scheme. In general, division schemes may exhibit static or dy-
namic properties. The static scheme matches a fixed criterion, whereas a dynamic
scheme uses a varying criterion that depends on the incoming traffic. Division schemes
can also be stateful or stateless. A stateful scheme relies on stored information to decide
to which node an incoming packet has to be forwarded. Stateless division on the other
hand does not accumulate any kind of state. Further, we classify division schemes as
packet-based or flow-based. Packet-based approaches consider a single packet as unit to
distribute, whereas flow-based schemes consider a connection as distribution unit. At
the same time, overloading any of the instances would introduce a new vulnerability.
Hence, a traffic division scheme can either be fair or unfair. Table 3.2 summarizes the
different division schemes once again.

All of the division schemes have one thing in common: correlated information between
different partitions have to be exchanged by the NIDS instances. The load-balancer
is only responsible for an efficient distribution, yet the NIDS itself has to provide a

21

3 Transparent Load-Balancing

communication sub-system in order to send the lacking information to other instances
of the system.

Generally, schemes can be combined in large-scale environments to tune a NIDS cluster
for maximum performance and efficiency. We briefly rate the different division schemes
in Table 3.3. A scheme is (i) fair if it distributes the traffic equally over a set of nodes,
(ii) scalable if adding further nodes is possible without negative effect on the load-
balancer, and (iii) flexible if it does not impose limitations on the NIDS cluster. We
have identified four relevant traffic division schemes whose advantages and disadvantages
we discuss in the follow. In addition, we argue why only one is suitable for our needs.

Round-Robin Division. The easiest traffic distribution scheme can be achieved with round-
robin division. In this case, packets or flows are evenly scattered over multiple in-
stances. Round-robin division has the advantage that it is very easy to implement
and provides a very fair load distribution. A round-robin distribution scheme based
on packets is mentioned in [SWF05]. Its main disadvantage is that it disrupts flow
information, rendering it unusable and inefficient in practice since today’s NIDSs
perform connection-based analysis. Packet-based division schemes impose such an
immense communication overhead that it would be almost the same to sending
the entire packets from instance to instance instead of only exchanging more light-
weight information. Hence we discard packet-based schemes throughout the rest
of our discussion.

If we use flow-based round-robin division, we could tackle this problem. However,
in this case the load-balancer has to store state information for each flow in order
to send the corresponding packet to the correct node. Despite the fairness this
approach implies, we consider it as an impractical division scheme because it does
not scale.

Dividing by IP Space. A balanced division by local IP space [Som05] requires knowledge
of network traffic characteristics. These characteristics can be gained by perform-
ing traffic measurements and leveraging the administrator’s operational experience.
The main advantage this scheme offers is the simple integration of additional sys-
tems to further distribute the load. Further, intra-subnet communication does
not involve any NIDS communication overhead as this type of communication is
treated by the same NIDS instance.

On the downside, no inter-subnet activities (e.g. scans) can be correlated without
communication. Moreover, since this approach is static, it cannot quickly adapt
to changing traffic patterns.

Dividing by Application. Load division by application [Som05] delegates applications that
form a significant share of the load to dedicated systems. For an example, if we
find that the network traffic includes a large proportion of HTTP traffic, excluding
HTTP processing from the main system and moving its analysis to a dedicated
machine can effectively absorb protocol-specific peaks. But not every protocol

22

3.3 Mechanisms

Table 3.3 Rating of the different division schemes.

Round-Robina IP-Space Application Hash-based

Fairness ++/++ – – – ++
Scalability +/–– ++ – ++
Flexibility –/++ + – ++

aThe Round-Robin scheme is examined for packet-based and flow-based division.

communicates within a self-contained single connection. Consider the FTP proto-
col whose control connection negotiates a subsequent data connection. Unless the
control connection is successfully parsed, the corresponding FTP data connection
cannot be recognized as such.

Yet the biggest problem is the poor scalability and unfair division of the traffic.
Eventually, all applications that comprise a significant portion of the traffic will be
assigned to particular nodes.

Hash-based Division. We differentiate between division by classical flows and IP flows.
Classical flows are usually identified by a connection 4-tuple. For TCP and UDP,
a flow is composed of all packets belonging to the same connection with identical
originating IP, destination IP, source port, and destination port. Other transport
protocols may exhibit similar flow-like definitions. The main advantage of this
scheme is that each NIDS instance can perform connection-based analysis. In ad-
dition, it enables a scalable topology independent processing [KVVK02, SWF05].
Yet there are still cases where additional context is needed, for example the afore-
mentioned FTP data problem is not solved in this scheme.

Dividing by IP flows would strike the FTP data problem, as control connection
and data connection own the same IP source and destination pair, and the corre-
sponding packets would be routed to the same instance. However, IP flow division
is not as fine-grained and fair as classical flow division. For example, all connec-
tions belonging to a vertical scan1, i.e. a port scan of a host, would fall to the
same instance. This introduces a new vulnerability to the NIDS, as one instance
can easily be overloaded. During such a denial-of-service attack, the system is less
likely to detect actual attacks.

We favor hash-based division with classical flows since it yields the same fairness
as flow-based round-robin division, but features much greater scalability due to its
stateless property. Throughout the remainder of the thesis, we hence employ this
division scheme.

Note also that load-balancing takes place independently from the actual NIDS technol-
ogy. In principle, any NIDS can be accommodated in a cluster installation. However, the
NIDS should feature a communication sub-system to exchange the lacking information.

1As opposed to a vertical scan, a horizontal scan probes the same service at multiple machines. It is
also referred to as an address scan.

23

3 Transparent Load-Balancing

We examined various schemes to divide the network packet stream into subsets of
manageable size. The crucial trade-off is how to divide the traffic without tearing apart
information necessary to detect attacks and at the same time maintaining a fair load
distribution. Apparently, it is impossible to address both ends satisfyingly. In the
following, we therefore introduce communication mechanisms to mitigate the lack of
information caused by the traffic division.

3.3.2 Communication

Distributed processing is key to fruitful load-balancing, as a single NIDS cannot cope
with the load that high-volume links induce. Therefore, it presents a viable alternative
for high-speed environments. However, a key challenge remains the coordination of their
operation.

Today’s NIDSs operate in real-time. A fast and flexible communication sub-system is
essential to exchange information between instances of the system. As discussed in §2.4,
the majority of attacks in the Internet are undirected and automated. In order to take
on these types of attacks at different points of the network, communication mechanisms
have to be adopted that allow quick propagation of information.

In the following, we describe three important aspects of a communication sub-system:
asynchronous communication, degree of state propagation, and different communication
schemes.

Asynchronous Communication

While synchronous communication is reliable, real-time constraints often inhibit such
communication models [Neu94, TS02, Som05]. For example, bidirectional communica-
tion usually implies to deal with unreceived replies, requiring failure-recovery. If one
instance waits for an answer but the remote side is not available anymore, it would keep
the waiting instance from processing, possibly leading to packet drops. This essentially
means that communication has to be asynchronous to meet the real-time requirements.
In this unidirectional model, messages that come in at the remote side usually elicit an
event which activates an event handler executing the corresponding code. If the incom-
ing event has low priority, it can be scheduled and processed later together with another
event. This type of event handling is called batch-processing and can ameliorate the
system performance.

However, asynchronous communication entails also disadvantages. Messages can be
lost in an unreliable communication channel. When a NIDS does not receive an impor-
tant event notifying about an attack, the effectiveness of the system is derogated.

State Propagation

Flexible exchange of decision context among instances of a NIDS is requirement for
transparency. More precisely, a much higher degree of transparency can be achieved
with fine-grained control over the internal state of a NIDS.

24

3.3 Mechanisms

Figure 3.1 Possible communication schemes of NIDS instances.

Peer

Peer

Peer

Peer

State update

(a) Mesh communication.

ProxyPeer

Peer

Peer

Peer

State update

State propagation

(b) Proxy communication.

Unfortunately, most of today’s NIDSs lack the capability to share the internal fine-
grained state which remains volatile in the memory of the NIDS. Often, only aggregated
high-level state already having been coined with the site’s policy can be exchanged. For
example, aggregated alarm logs cannot be decomposed into their actual sources. But
the granular ingredients for a triggered alarm might be an important information for
other NIDS instances as well. With the condensed logs, however, other instances can
only guess what actually triggered the alarm.

To overcome this limitation, the independent state framework (see §2.3.2) has been
developed, allowing us to propagate the bulky fine-grained state between instances of
a NIDS. In our work, we inherently rely on independent state to build a flexible NIDS
cluster.

Communication Schemes

Different communication models are expedient depending on the expected cluster scale.
If only a few instances communicate, a meshed scheme is the most performant. However,
if the number of nodes is growing, a full mesh with n(n−1)

2 connections implies non
negligible communication overhead. To reduce the overhead, each instance connects to a
proxy broadcasting the state information to every node except the originator. Thus the
communication channels are reduced to n connections. The two communication schemes
are shown in Figure 3.1.

We demonstrated mechanisms for transparent load-balancing in this section. Several
aspects play an important role when designing a NIDS cluster for high-speed environ-
ments. First, load-balancing offers a viable mechanism to thwart processing bottlenecks.
We identified four possible traffic division schemes to distribute the work load among a

25

3 Transparent Load-Balancing

set of nodes. Thereby, we tear apart connected information in the network traffic stream
and have to employ communication to make the lacking context available to the other
instances of the NIDS cluster.

3.4 Bro Cluster

The following section covers our concrete realization of a distributed NIDS with the
previously discussed goals and mechanisms in mind. Throughout this section we present
the Bro Cluster, an array of machines running the Bro NIDS (see §2.3). The main
reason why we selected the Bro NIDS is that it has already been in use for a long
time at LBNL. We further employ the Bro NIDS because (i) we can greatly leverage
its communication framework, (ii) we collaborate with people having long operational
experiences with Bro and actively develop the system’s core enabling us to quickly fix
discovered bugs, and (iii) no other open-source NIDS LBNL encountered provides such
a flexible configuration.

Practical issues motivated us to rethink the current operational situation. Although
Bro serves its purpose well, the high traffic volume causes load problems. One single
Bro cannot cope with the induced load anymore, which leads to a cleft setup: Two Bro
instances run separately on different machines; one dedicated to HTTP traffic analysis
only and the other is responsible for the remaining network traffic. This“crude”approach
to handle the high system load clearly lacks flexibility and transparency (see §3.2.1). No
intra-Bro communication to exchange valuable information can be leveraged to expand
the system’s decision context.

We therefore use the Bro cluster to conduct effective network intrusion detection high-
performance environments, eliminating the current operational drawbacks.

We start with a brief description of our target environment in §3.4.1, where the Bro
cluster is now in operational use. In §3.4.2 we detail the hardware configuration at
LBNL. We introduce our enhancements and changes to the Bro NIDS in §3.4.3 and
finally summarize the benefits of the Bro cluster in §3.4.5.

3.4.1 Lawrence Berkeley National Laboratory

Our target environment is the Lawrence Berkeley National Laboratory (LBNL, [LBL]).
It is the oldest of the U.S. Department of Energy’s (DOE) national laboratories, managed
by the University of California, Berkeley (UCB, [UCB]). LBNL has around 3,800 employ-
ees and conducts unclassified research across a wide range of scientific disciplines, mainly
focusing on fundamental studies of the universe, quantitative biology, nanoscience, new
energy systems, and environmental solutions. The network infrastructure comprises
around 4,000 users and 13,000 hosts. The internal backbone has a capacity of 1Gbps
and DOE’s Energy Sciences Network (ESNet) provides an 1Gbps upstream link which
will be soon upgraded to 10 Gbps.

LBNL uses the Bro NIDS to monitor the network traffic at various locations, par-
ticularly the external link and its DMZ. The firewall rules are in general very liberal.

26

3.4 Bro Cluster

Figure 3.2 LBNL load-balancing front-end.

Internet Tap
LBNL

In

Rewriter

Switch

Firewall

Cluster
Nodes

NIDS Cluster

However, a few critical hosts experience stricter rules. Leveraging Bro’s flexible script-
ing language, LBNL incorporates a mechanism to automatically drop connectivity of
attacking hosts.

The external traffic amounts to 35 TB per month, whereof 11 TB are incoming and
24 TB outgoing (36/78 Mbps on average).2 Since the major fraction of the traffic is
HTTP traffic, the HTTP protocol analysis has moved to a dedicated machine, disbur-
dening the main processing. Both machines receive the same amount of traffic but
employ different BPF filter expressions to extract the relevant portion of traffic. This
poor man’s load-balancing has been replaced by our deployed Bro cluster.

3.4.2 Cluster Hardware

A reliable hardware infrastructure is necessary in order to perform viable distributed
network intrusion detection. Therefore, the underlying hardware architecture has to be
designed with resilience in mind to meet the dynamics of large-scale networks. A flexible
hardware setup permits a quick amplification of processing power if resources turn out
to be insufficient. The deployed cluster hardware at LBNL incorporates these ideas and
is hence suited for operational use.

In the following, we briefly describe the key elements the cluster architecture consists
of, shown in Figure 3.2.

Tap. To direct a copy of each packet to the detector, an optical tap forwards a duplicate
of each packet to the rewriter. It is an ATM fiber tap from NetOptics [Net],
designed for high-performance fiber monitoring.

2These numbers have been recorded in 2005 [Som05]. At that time, HTTP, SSH, and FTP-DATA were
the most prevalent application layer protocols.

27

3 Transparent Load-Balancing

Rewriter. The rewriter is the cluster processing front-end and performs hash-based traffic
division by classical flows (see §3.3.1). A hash value h from the connection 4-tuple
is calculated and taken modulo the number of nodes n, as denoted in 3.1.

h(src IP, dst IP, src port, dst port) mod n = i (3.1)

The rewriter is implemented as a custom kernel module. At first, each packet from
the network interface card (NIC) is delivered to the kernel process. Thereafter, the
hash from equation 3.1 is generated. The resulting number i maps to a particular
cluster node’s MAC address. Finally, the the packet’s destination MAC address is
rewritten and then sent to the switch. We refer to the traffic flows directed to a
particular node as slice [KVVK02]. The custom kernel module runs on a FreeBSD
machine equipped with a Pentium 4 2.60 GHz and 1GB of memory.

Cluster nodes. We use currently 9 cluster nodes, each equipped with two Pentium III
(Coppermine) 1 GHz, 3 GB of memory. On each node runs one instance of the Bro
NIDS in version 1.1 with our cluster enhancements. We refer to two communicating
Bro instances in the following as peers.

In our setup, one node will assume the role of a proxy node (see Figure 3.1(b)). Since
the proxy does not possess the same bulky internal state as the processing nodes, the
proxy manages with less memory. On the other hand, the proxy glues together logs and
hence needs a larger hard disk.

Note that this architecture is principally independent of the employed NIDS. Besides
division by flows, the front-end could be implemented with other traffic division schemes
as discussed in §3.3.1. This is especially interesting for NIDSs that do not need such a
sophisticated communication sub-system like Bro (§2.3.2).

For example, a division scheme that divides traffic by IP space will most likely not
need to use inter-node communication for protocol analysis. Nevertheless, correlation
over different subnets involves communication between the nodes.

3.4.3 Bro Configuration

Our objective is to run the Bro NIDS on the cluster. To this end, we have to adapt its
configuration to potentiate the exchange of state information between the cluster nodes.
Having the independent state framework as flexible communication sub-system in place,
we need to iterate over the policy scripts and identify state that has to be exchanged.
During this process, we discovered that the communication framework requires some
tuning to work reliably. Fortunately, we could directly instruct the developers to enhance
the communication framework with our suggestions. Our changes and contributions are
now part of the official Bro distribution.

Bro consists of a layered architecture (see §2.3). Its policy-neutral core layer is inher-
ently connection-based and hence does not result in any problems with regard to our
load-balancing approach. We could principally synchronize core events, but do not need

28

3.4 Bro Cluster

to rely on this feature, as core events are congruent with the traffic division scheme we
employ.

The policy layer consists of policy scripts that can be divided into two classes. On the
one hand, there are scripts performing intra-connection analysis. These policy scripts
operate only on data gathered from one flow. On the other hand, some scripts correlate
information across multiple connections, they perform inter-connection analysis.

Since we use traffic division by flows, the first type of scripts should work out of
the box. Yet inter-connection scripts do not have the decision context available when
a dependent flow is analyzed by another peer. To mitigate this lack of context, we
synchronize the corresponding variables by sending state information to the other peers.
Thus every peer obtains the full decision context while processing only a subset of the
entire traffic.

Core events and user data can be synchronized and both rely on the same serialization
framework. While core events are generated at the event layer, user data are defined in
policy scripts at Bro’s policy layer. We abandon the possible low-level event propagation,
as synchronizing user-data causes less overhead, and hence appears to be more promis-
ing for large-scale installations [Som05]. Since we further do not need to synchronize
connection-based core events, we concentrate on the script layer. To synchronize user
data, a script-level variable has to be declared as &synchronized. Any modifications to
the variable will then be sent to the other peers. As a explicit example,

distinct_peers: table[addr] of set[addr] &synchronized

propagates any changes to the content of table distinct_peers with the effect that
the variable has the same value at each peer.

In the following, we exemplary discuss the problems encountered during our examina-
tion and provide adequate solutions where possible.

Intra-Connection Analysis

Scripts performing intra-connection analysis extract their information from a single con-
nection. The SMTP and POP3 analyzer, for example, perform analysis with a connection
as unit of analysis. In general, connection-based scripts do not need any modification to
work in a cluster that incorporates traffic division by flows.

But not all intra-connection-based scripts worked out of the box. For instance, we
had to modify the HTTP policy script. A single TCP connection generally accommo-
dates one HTTP connection. However, Bro has a notion of a HTTP session based on
source and destination IP tuple rather than on a TCP flow. The idea behind indexing a
HTTP session by IP tuple is to collapse all individual activities between two hosts into
a single instance of surfing. This notion is clearly not TCP connection-based and may
result in a HTTP session scattered across many peers. As HTTP is the most predom-
inant application protocol, it involves a lot of state exchange in a cluster environment
and produces race conditions3 which reduce the accuracy of the system. We therefore

3We will discuss race conditions and their impact on the system in §3.4.4.

29

3 Transparent Load-Balancing

changed the concept of a HTTP session to a TCP flow-based notion and now achieve
the same accuracy a single Bro accomplishes.

Most scripts based on intra-connection analysis hold state within a single flow but
sometimes also keep track of additional information. For example, the POP3 script has
a table pop_connection_weirds keeping track of erroneous POP3 replies, indexed by
the connection originator:

global pop_connection_weirds:

table[addr] of count &default=0 &read_expire = 60 mins;

Although the POP3 analyzer performs general protocol analysis within a single flow,
this table counts errors that can occur in multiple flows. To retain the same table
entries as in a single setup, we have to append the &synchronized attribute to the
variable declaration.

Another issue we encountered on intra-connection analysis was the allocation of pro-
tocol session identifier. Such IDs usually consist of a special character with a consecutive
number. A typical HTTP session ID has the following format: %233. To ensure unique
IDs in the cluster, we could synchronize the counter variable. However, the two or more
peers can simultaneously increment the synchronized variable and if the state update
arrives too late at the other peer, it will use the same value. We experienced this quite
often and thus decided to prefix IDs with their (hopefully) unique hostname to avoid
the assignment of duplicate IDs. A positive side effect is that we can now trace back the
origin of the connection after a centralized fusion of log files.

Inter-Connection Analysis

Scripts employing inter-connection analysis correlate information across multiple con-
nections. The most vivid example is Bro’s scan-detector scan.bro, detecting various
types of scanning activities:

Backscatter. Backscatter is “unsolicited traffic that is the result of responses to attacks
spoofed with a network’s IP address” [PYB+04].

Address Scan. Address scans or horizontal scans graze multiple hosts in a specific IP
range, whereas only a single service is probed.

Port Scan. A port scan or vertical scan tries to enumerate a high number of ports of a
single machine. On the other hand, a horizontal scan or address scan probes a
single service on multiple machines. The scan detector script records both kinds
of activities and even distinguishes vertical scans further in low port trolling (priv-
ileged ports lower than 1024) and general port scans.

Password Guessing. Password guessing refers to randomly trying various username/pass-
word combinations in order to successfully login by chance. It is usually a very noisy
attack and many applications already provide protections against it. However, the
scan detector recognizes multiple login attempts from the same source address and
raises an alert when a customizable threshold is transgressed.

30

3.4 Bro Cluster

Figure 3.3 Excerpt of Bro’s scan detector scan.bro.

Index by scanner address, yields the number of distinct ports scanned

global distinct_ports: table[addr] of set[port]

&read_expire = 10 mins &expire_func=port_summary &synchronized;

Indexed by scanner address, yields a table with scanned hosts (and ports)

global scan_triples: table[addr] of table[addr] of set[port] &synchronized;

Coarse search for port-scanning candidates: those that have made

connections (attempts) to possible_port_scan_thresh or more

distinct ports.

if (orig !in distinct_ports || service !in distinct_ports[orig])

{

if (orig !in distinct_ports)

{

local empty_port_set: set[port] &mergeable;

distinct_ports[orig] = empty_port_set;

}

if (service !in distinct_ports[orig])

add distinct_ports[orig][service];

if (|distinct_ports[orig]| >= possible_port_scan_thresh &&

orig !in scan_triples)

{

local empty_table: table[addr] of set[port] &mergeable;

scan_triples[orig] = empty_table;

add possible_scan_sources[orig];

}

}

The scan-detector gathers its information from multiple connections that can possi-
bly be analyzed by other peers. Since the detection mechanism of the scan detector
inherently relies on threshold transgression checks, it is very important that the detector
includes every single scan to finally raise an alert when a significant number of scans
exceeds a threshold. For example, Figure 3.3 illustrates the classification of possible scan
sources. It is a very coarse classification as it only considers distinct ports independent
of the destination.

Consider the concrete example in Figure 3.3, where the threshold to raise an alert
is 50 scanned distinct ports in 10 minutes (possible_port_scan_thresh = 50). If
one scan probe is accommodated in one connection, the 50 connections can be evenly
scattered over all analyzing peers. Without synchronization, each peer would not be
able to recognize when the “global” threshold is transgressed. We declared the table
distinct_ports as &synchronized to solve the problem; any change to the table by
one of the peers is now propagated. Hence every peer identifies the host as a possible
scan source.

31

3 Transparent Load-Balancing

3.4.4 Practical Hurdles

During our examination of the policy scripts and testing cycles, we discovered various
practical hurdles. So far, we assumed that synchronizing a variable works as expected:
mutually-exclusive data structures should ensure that only one peer at a time has access
to a particular variable. In practice, real-time requirements impede this model, as we
will describe in the following. We further identified common pitfalls throughout the
conversion of policy scripts and present practical solutions where possible.

Race Conditions

Albeit the existence of synchronized data structures, various types of race conditions
may emerge.

Due to real-time requirements, Bro explicitly allows the occurrence of race-conditions.
The independent state framework implements synchronized tables by propagating modi-
fications to data as operations4. In some circumstances, this can lead to race conditions.
For example, if two peers share a synchronized table which counts alerts by source ad-
dress, then each of them might detect independently that the same source address has
generated an alert. When both peers now modify the table simultaneously, a race condi-
tion can occur. The winner will overwrite the loser’s value, with the effect that only one
value from the same source address will be taken into account. An example is given in
Figure 3.4(a). Peer A and peer B generate 10 respectively 32 alerts for the same source
address x simultaneously. By propagating the absolute value of the variable, the peers
reciprocally overwrite their previous value which entails incorrect values on both sides.

To avoid this kind of race conditions, mutually-exclusive data operations would be
required. This is practically impossible as it would violate Bro’s inherent real-time
exigencies that forbid any type of locking. Therefore, Bro features explicitly a model
of loose synchronization where race-conditions may occur. The occurrence of race
conditions cannot be suppressed but at least mitigated. To this end, we present one
special case from [Som05] and then our new additional mitigation strategy which we call
mergeable tables.

The existing special case would be to perform “relative” operations instead of propa-
gating absolute values whenever possible. If a state update in the above example would
increment the counter of the table instead of assigning an absolute value, the counter
would be increased by two, yielding the correct result. Figure 3.4(b) shows relative op-
erations with the += operator resulting in a correct common value of 42. In this case,
we did not remove the race condition but alleviated its impact.

Still, more harmful race conditions can occur. Consider the case when multiple peers
modify the inner set of a nested table. For example, a delete operation on the inner
set is automatically a modification of the corresponding index of the outer table and
triggers an update for this index. The update arriving at other peers overwrites the

4With fully independent data, changes can be propagated in terms of descriptions of the operations
to perform on the data, rather than the full bulky data itself. Examples for operations are incre-
ment/decrement counters or add/delete table entries.

32

3.4 Bro Cluster

Figure 3.4 Different types of race conditions.

Peer A Peer B

foo: table[addr] of count

foo[x] = 10 foo
[x]

 =
32

State propagation

foo[x] = 10foo[x] = 32

foo[x] = 0 foo[x] = 0

(a) Absolute value propagation.

Peer A Peer B

foo: table[addr] of count

foo[x] += 10 foo
[x]

 +=
 32

State propagation

foo[x] = 42foo[x] = 42

foo[x] = 0 foo[x] = 0

(b) Relative operations.

Figure 3.5 Code snippet illustrating the &mergeable attribute.

global foo: table[addr] of set[port] &synchronized;

local bar: set[port] &mergeable;

add bar[y];

foo[x] = bar;

entire data associated to the outer index. If the peer receiving the state update has
made modifications to its inner set, these modifications would be overwritten by the
incoming data and are lost.

We developed a way of thwarting this race condition. To this end, we introduce the
new variable attribute &mergeable5. Mergeable sets do not overwrite each other on
incoming state updates, but rather build the union of their contents. We illustrate such
a process on the basis of the previous example in Figure 3.5, but slightly modified the
table foo. It is now a nested table with an inner set of ports. The set of ports could
represent a number of distinctively scanned ports from a given source address, as shown
in Figure 3.3. We then allocate a local set bar with the attribute &mergeable and add
an element y to it. Thereafter, we bind the set bar to the index of the table x. Now
consider an incoming state update foo[x] = baz which would overwrite the value for
index x if we did not specify the attribute &mergeable. But instead, the union of the
old and new set is built, i.e. the two sets are merged: foo[x] = bar ∪ baz.

In order to send a state update for a given variable, its value has to be referenced by a
name. The values of global variables are clearly denominated by their names. However,
values that are inner part of nested data structures do not possess a name. Hence Bro

5The Bro language features variable attributes which assign further properties to a variable. Attributes
are specified when declaring a variable.

33

3 Transparent Load-Balancing

devises an internal name for these values, not noticeable by the user. Together with the
first state update for a given value, Bro sends its corresponding name. The receiver then
knows how the value is called and adopts the same name for future updates. But if two
peers simultaneously generate a value for the same table entry, they both independently
devise a name and send it along with the value. The mergeable attribute is responsible
for consolidating two values, but what should be the future name of the result? In fact,
both names represent the merged result. Technically, the incoming name is installed
as an alias for the already existing name. Based on our findings, Bro has now been
extended to correctly handle the fusion of tables.

Common Pitfalls

Beside race conditions, we identified other recurring problems and common pitfalls
throughout the conversion of policy scripts. Having identified these pitfalls, we pro-
pose techniques to mitigate their impact.

Synchronized variables in expire functions. The capability to propagate state has to be
utilized with care. Especially when using expire functions, unforeseen errors can
arise. Expire functions are generally employed when certain actions have to be
performed in conjunction with the expiration of a table element; they can contain
arbitrary code. If an expire function is associated with a table, the expiring table
element will be first handed to the expire function before it will be deleted.

We examine now an example given in Figure 3.6. Here, a global counter foo_-

cnt corresponds to the number of elements in the table foo and is decremented
each time an element expires. Furthermore, the table bar is semantically asso-
ciated to the table foo, because the expire function of table foo decrements the
corresponding index of table bar.

Yet very subtle complications may occur in a distributed setup when peers share
synchronized variables. In the example shown in Figure 3.6(a), the global vari-
ables are synchronized and any changes to them are propagated to the other peers.
After the decrementation of foo_cnt on one side, the local change is propagated,
decrementing the remote counter, too. However, the remote side expires the same
element as well, resulting in another decrement operation. Altogether, the syn-
chronized counter has a value of n− 2 instead of n− 1, which can lead to possible
count underflows. On the other hand, an incoming delete operation for bar[idx]
has no effect on a table which does not accommodate the index idx, unless it has
been inserted again in the meantime.

Hence, to suppress the duplicate state updates, we suggested to introduce two
new functions, suspend_state_updates and resume_state_updates, to suspend
potentially dangerous operations in expire functions. Figure 3.6(b) depicts the use
of these two functions.

Splitting multi-dimensional tables. Several tables use multi-dimensional indices. The scan
detector, for example, contains the set distinct_peers: set[addr, addr], which

34

3.4 Bro Cluster

Figure 3.6 Protecting a synchronized variable in an expire function.

global foo_cnt &synchronized;

global foo: table[addr] of port &synchronized

&create_expire = 10 mins &expire_func=foo_exp;

global bar: table[addr] of count &synchronized

&create_expire = 10 mins;

function foo_exp(t: table[addr] of port, idx: addr) : interval

{

--foo_cnt;

delete bar[idx];

return 0 secs;

}
(a) Unprotected expire function.

function foo_exp(t: table[addr] of port, idx: addr) : interval

{

suspend_state_updates();

--foo_cnt;

delete bar[idx];

resume_state_updates();

return 0 secs;

}
(b) Protected expire function.

keeps track of distinct addresses scanned by a source. To count the number
of distinct destinations, the traditional method was to employ a separate table,
e.g. num_distinct_peers: table[addr] of count &default=0, and automat-
ically increment/decrement the address counter on every insert/delete operation.
Although the second table does not expose race conditions because only incre-
ment/decrement operations are propagated, additional synchronized tables gener-
ate further state updates and should be avoided in order to minimize the total
amount of exchanged state.

Thus, we suggest splitting multi-dimensional tables into nested tables. The ta-
ble distinct_peers: set[addr, addr] is in this case converted to distinct_-

peers: table[addr] of set[addr]. First, we can now simply determine the
size of the set with Bro’s cardinality operator: |distinct_peers[qux]| yields the
number of scanned hosts by qux, without the need for an additional table.

Second, we gain a further advantage as we can now achieve more granular expire
semantics by setting additional expire timers on inner tables as well.

Threshold checks. Many activities are believed to be malicious if repeated multiple times.
To count the actual occurrences of an activity, a NIDS usually employs a counter,
generating an alert upon transgression. For example, a NIDS can interpret multiple
login failures as password guessing. Often, threshold checks are implemented as

35

3 Transparent Load-Balancing

follows:

if (++foo_cnt == threshold)

raise alert;

Synchronized data structures can, however, exhibit unexpected behavior in dis-
tributed environments. Consider the case where the counter foo_cnt is incre-
mented by an incoming state update before the script reaches the code again. If
foo_cnt had, due to the incoming state update, the same value as threshold, the
counter would first be incremented and checked for equality. The condition would
thus never be true, yielding a false negative.

Although the ability to modify variables remotely via state updates offers great
flexibility, in this case it falls short to keep the policy scripts in tact. As previously
discussed, high-speed intrusion detection has real-time requirements, prohibiting
mutually exclusive data structures that can potentially defer or even block packet
processing. Therefore, we have to convert existing policy scripts in a manner that
they become more robust against external modifications.

3.4.5 Summary

Our motivation was to conduct efficient load-balancing in high-performance environ-
ments. We identified transparency and scalability as two major objectives of transparent
load-balancing. Transparency enables us to keep a NIDS tractable, whereas scalability
paves the way for growth in various dimensions. To substantiate these goals, we pre-
sented communication and load-balancing as practical mechanisms. While a flexible
communication sub-system is an inherent requirement for efficient inter-node communi-
cation, load-balancing is an essential tool to distribute analysis in order to cope with the
load that high-volume links induce.

We further presented the Bro Cluster, an array of machines performing parallel in-
depth analysis of a sliced network packet stream. With independent state, we have a
flexible communication sub-system at hand that we leverage to create a transparent clus-
ter. The Bro cluster is now operationally deployed at LBNL’s border and has substituted
the hitherto manually coordinated Bro instances.

36

4 Cluster Evaluation

To substantiate the feasibility of our enhancements, we examine the performance of the
cluster in various aspects. In detail, we scrutinize the resource consumption by looking
at the inter-peer communication. Clearly, the most interesting question is the dimension
of scale we can achieve by tossing in as many nodes as possible. Not only does the
size of the cluster give interesting insights, but also more subtle aspects like the load
distribution between the two Bro processes, the detection rate loss due to synchronized
processing, and the overhead of the communication. Given the dynamics of live traffic,
a reliable testbed to accomplish reproducible measurements is necessary. Therefore, we
introduce our examination methodology in §4.1, followed by our testbed in §4.2. We
audit each of the sketched evaluation facets in §4.3.

4.1 Methodology

Due to the natural dynamics of Internet live traffic, we cannot simply run our test
scripts with a live packet stream to perform measurements yielding reproducible results.
A common method of examining the performance of NIDS is to capture a packet stream
as a pcap trace and feed the NIDS offline with it. Thus, the NIDS’s input is invariant
while the output now depends on the configuration parameter. Trace-based analysis
entails a “compressed” analysis time which is referred to as trace time [SP05]. Yet, the
communication subsystem which is independent of the trace time operates in realtime.

In order to perform reproducible measurements, we have to incorporate the trace-based
analysis. Fortunately, we can leverage Bro’s pseudo-realtime mode which synchronizes
realtime and trace time. Bro can insert processing delays while receiving packet input
from a trace. These delays coincide with inter-packet arrival gaps normally observed
during packet capturing. Internally, Bro defers packet processing until the time difference
to the next packet timestamp has elapsed.

In practice, the cluster processing front-end (see §3.4.2) divides the packet stream into
flows and directs each slice to the corresponding node. Yet for our measurements, we
instrument the cluster with traces to achieve reproducibility. We captured one trace
and manually split it up to simulate the front-end. To slice one big trace into several
small pieces, we use tcpdump [TCPb]. However, the filter expressions of tcpdump lack
the modulo operation which the front-end uses to split the packet stream into flows.
Thus we have to “emulate” the modulo operation. Let c be all necessary information
to identify a connection, let n ∈ {m ∈ N | m ≥ 2} be the number of nodes, and let
r ∈ [n − 1] be a possible residue class. Then, to obtain the residue class of a trace file,
we emulate the modulo operation as follows:

37

4 Cluster Evaluation

c −

⌊

c

n

⌋

· n = r (4.1)

For example, the information c identifying a TCP connection is the 4-tuple of IP
source/destination address and source/destination port. A tcpdump filter expression for
such a connection would be:

ip[14:2]+ip[18:2]+tcp[0:2]+tcp[2:2]

4.2 Testbed

For all of our measurements, we used the same trace. We captured a one-hour packet
trace in the LBNL environment. To concentrate on the relevant traffic for the analysis,
we applied a BPF filter to prefilter packets we do not analyze anyway.

The volume of the trace was 11 GB and we did not experience any packet drops. We
explored further details of the trace with the free trace analysis tool tcpdstat [Tcpa]:
the trace contained 16,519,701 packets accommodated in 363,876 flows (avg. 45.40
pkts/flow) with an average rate of 28.34 Mbps. We observed a peak rate of 121.63 Mbps.
99.26% bytes of the trace were TCP traffic, only 0,74% UDP. The most prevalent protocol
was HTTP (87.12%), followed by HTTPS (6.89%), SMTP (3.31%) and icecast (1.17%),
a streaming media server supporting Vorbis and MP3 audio streams [Ice].

Throughout our measurements, we exclusively used the proxy communication scheme
that was introduced in §3.3.2. Although we could have used a meshed setup for a small
number of peers, we decided to retain one scheme in order to obtain comparable results.

To assess the scalability of our implementation and reduce side-effects to a minimum,
we conduct several measurements with a different amount of peers. Thereby, one node
always serves as a proxy, whereas the number of peers changes from 2, 3, 5, and 8.

4.3 Measurements

In this section, we discuss our measurements with regard to accuracy and performance.
At first, we investigate the accuracy of the cluster in §4.3.1. Without satisfying accuracy,
all further performance related measurements do not make any sense, because the cluster
would else not be suited for practical use.

After the discussion of accuracy, we turn in §4.3.2 to the performance evaluation in-
cluding an analysis of CPU load, communication overhead, and assessment of scalability.
Finally, we summarize our observations and results in §4.3.3.

4.3.1 Accuracy

Ideally, the load-balancing NIDS cluster recognizes the same amount of intrusions as
one single instance. However, practice shows that we face several temporal constraints
due to state propagation that have an impact on the accuracy. Since the detection of

38

4.3 Measurements

intrusions is the main goal of a NIDS, an alleviated accuray would render the system
ineffective. Therefore, it is important to iron out any effects impairing the detection rate
of the cluster. In the following, we discuss observed issues affecting the accuracy of the
cluster and present mitigating solutions where necessary.

FTP-DATA connections

Initially, we had difficulties in recognizing FTP-DATA connections as such. The FTP
analyzer possesses a table that keeps track of expected FTP-DATA connections, issued by
the PORT command in the control connection. A single installation has the information
about the incoming data connection immediately available. However, as we operate in a
distributed environment, this may not be necessarily the case. Because the FTP control
connection can exhibit a different TCP connection tuple and thus a different hash value
from the data connection, they can be routed to different peers.

Bro keeps track of the type of every connection (e.g. FTP, HTTP, SMTP, etc.) while
it is active. A connection is labelled as soon as it has been established successfully. If
FTP control connection and data connection are analyzed by separate peers, we cannot
identify FPT-DATA transfers reliably because of the lacking context. Thus we synchro-
nized the table keeping track of expected data connections1. But Bro has still hardly a
chance to label FTP-DATA connections successfully in time, because state propagation
imposes a certain latency. Hence, we added an addional labelling when connections are
recorded to disk in order to correct previously wrong labelled connections.

Interestingly, we still recognize only 95,32% of all FTP-DATA connections. The aver-
age duration of the missing FTP-DATA connections is 0.15 seconds. Clearly, the time
window in which a state update could arrive in time is much too small. The longest
FTP-DATA connection we missed lasted 0.45 seconds, meaning that we recognize FTP-
DATA connections that last longer than half a second. Nevertheless, we can restore
the lacking label. One solution would be to post-process the centralized logs. As the
ftp.log contains the FTP control connection and therby the connection tuple of the
expected data connection, a simple script could relabel unidentified data connections.
Another solution would be to employ a different traffic division scheme (see §3.3.1) that
forwards control connection and data connection to the same node.

Scan Detection

The largest fraction of inter-peer connectivity results from Bro’s scan detector, containing
many frequently updated tables which comprise the majority of state updates. It is
therefore important to verify the accuracy of this key component. Further, converting
the scan detector was the most challenging task in our work. We had to fundamentally
change the data structures which the analyzer employs to keep track of scanners. We
came up with a solution that is suited for concurrent processing and eleminated all
awkward problems from the former single-architecture version.

1Technical details of our synchronized cluster configuration are explicated in §3.4.3.

39

4 Cluster Evaluation

Figure 4.1 CPU load of the analyzing peers (main process).

0.0 0.5 1.0 1.5

0
1

2
3

4
5

CPU utilization

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

2p_n1_nocomm
2p_n2_nocomm
2p_n1_comm
2p_n2_comm
1p_single

(a) 2 peers.

0.0 0.5 1.0 1.5

0
2

4
6

8

CPU utilization

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

2 peers / comm (2p_comm)
5 peers / comm (5p_comm)
single Bro (single)

(b) 5 peers.

Our output confirms that scan detection executes accurately in the cluster environ-
ment. The trace contains four port scans which generated alerts at 24, 43, 305, and 1734
scanned ports in the single Bro setup2. In the Bro cluster we achieved the same results,
except for the last alert yielding only 1733 scanned ports, thereby missing one port. As
these ports have been scanned rapidly in a few seconds (and in parallel with other scans),
we believe that the sheer volume of spawned state updates caused the difference.

4.3.2 Performance

Given that the analysis is the most CPU intense task for a NIDS to perform, we now
examine how well our load-balancing approach in terms of CPU costs turns out to be.

Bro starts two processes in a distributed setup. The main process (parent) is devoted
to perform the analysis of the incoming packet stream, while the communication process
(forked child) handles the communication with other peers. Inter-process communication
is realized with a UNIX pipe: the children of different Bro instances communicate among
each other, e.g. they send and receive state updates. Then, the received data are
shoveled to the parent process which can integrate the state changes in its analysis,
thereby broadening the decision context.

We evaluate the CPU load of both processes, but defer the examination of the com-
munication process until we discuss the overhead of the communication sub-system. At
first, we run Bro on the full trace without any communication at all. We compare all
other results to this run, because a single Bro has full decision context and no result dis-
tortion due to network latency. Thereafter we use our cluster configuration from §3.4.3
containing numerous &synchronized variables.

Figure 4.1 shows the probability density of the CPU utilization per second in different
setups. These measurements account only the user time of the main process which

2These values stem from Bro’s Scan Summary yielding the total amount of scanned ports after the
particular scan times out.

40

4.3 Measurements

Figure 4.2 CPU utilization.

2 peers 3 peers 5 peers

C
P

U
 u

ti
liz

a
ti
o

n

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

main proc: user time
main proc: system time
comm proc: user time
comm proc: system time

(a) CPU utilization of the proxy in different se-
tups.

proxy node1 node2 node3 node4 node5

C
P

U
 u

ti
liz

a
ti
o

n

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

main proc: user time
main proc: system time
comm proc: user time
comm proc: system time

(b) CPU utilization of the proxy with 5 peers.

is responsible for the connection analysis. We do not account the system time when
performing peer examination because we want to assess the analysis performance without
I/O operations, purely concentrating on the CPU utilization. As we will later see, the
system time is proportional to the user time for the peers (see Figure 4.2(b)) and would
cancel out anyway in this measurement. In Figure 4.1(a), three different Bro runs are
illustrated: the curve 1p_single shows our reference run which is one single Bro instance
on the entire trace without any communication. The second run, visualized by 2p_n1_-

nocomm and 2p_n2_nocomm, was conducted with two peers not communicating with each
other. Since the absence of communication entails a strong degradation of the detection
rate, it is inapplicable in practice. However, it helps us to assess the third run, depicted
by 2p_n1_comm and 2p_n2_comm, where a proxy and two peers share state information.

We now look at the fairness of the traffic division scheme. The congruence of 2p_-

n1_comm and 2p_n2_comm substantiates that our load-balancing approach is indeed fair;
each peer is charged with almost the same load. Moreover, enabling communication
results in a slight increase in CPU utilization due to the incoming state updates from
the communication process. Because of the congruence, we pick for further measurements
the CPU utilization curve of one peer representative for the entire group of peers (without
the proxy).

Looking at Figure 4.1(b), we see three runs. The first and second curve, single and
2p_comm, are the same as shown in Figure 4.1(a) to facilitate the comparison. The third
curve 5p_comm illustrates a Bro run with 5 peers.

We see that the average CPU utilization shrinks with an increasing number of peers:
the median shifts from 0.77 (single) over 0.53 (2p_comm) to 0.27 (5p_comm). The stan-
dard deviation was 0.14, 0.09, and 0.06 respectively. We thus deduce that our Bro
cluster can effectivly balance the load over an expandable set of peers. Compared to the
achieved outcome, a marginal increase in CPU load (resulting from communication with
the child process) is negligible for the main process conducting the connection analysis.

Turning to the assessment of scalability, we now regard Figure 4.2. We first consider

41

4 Cluster Evaluation

the proxy itself as subject of analysis and therafter compare the proxy with the peers.
Figure 4.2(a) shows three bars that illustrate the CPU utilization of the proxy node.
The two lower segments of each bar comprise the CPU utilization of the main process,
whereas the two upper bars represent the communication process. Both halves are
divided in user time (lower half) and system time (upper half).

For the communication process, visualized by the upper segment of the bars, the sys-
tem time makes up the largest portion of CPU utilization since inter-peer communication
primarily involves I/O and not CPU. On the other hand, the main process utilizes mostly
user time as it mainly integrates the state information from the child process into his
own state model. The more peers a proxy has to serve, the higher the system time of
the communication process becomes. This is attributed to complex serialization model
which we will dicuss in the following.

The looming question is, how many peers can we toss in until the system reaches its
scalability limits? We tried to answer this question by incrementally adding peers to the
setup. Surprisingly, the communication process of the proxy ran out of memory with
the addition of the 6th peer. In fact, the memory capicity is sufficient on the particular
nodes and the exhaustion turn out to be only a symptom of the real cause. In principle,
incoming state updates are queued in a buffer until they are processed. Now if more
state updates arrive than the proxy can process, the queue buffer will eventually overflow
because the proxy falls short of processing.

Before dealing with the root cause of this problem, we look in Figure 4.2(b) at the
unequal workload of the proxy compared to the peers. As in Figure 4.2(a), the bars split
up in two segments representing main and communication process, whereas each segment
again is divided in user and system time. If n represents the number of peers, we see that
both, user and system time of the communication process, are n times as much as on a
single peer. Note that our machines possess two CPUs and thus can run each process
on a separate CPU. Nonetheless, the sheer volume broadcasted from the proxy is far
too much. Looking at actual numbers, we found that the proxy receives/sends around
one/five million chunks for 8 peers in 5 minutes. It is not astonishing that communication
in this order of magnitude eventually causes the memory buffers to overflow.

In order to deeper understand this observation we now examine the inter-peer commu-
nication. Therefore, we present the serialization mechanism of the proxy. Considering
an incoming state update of a peer, the proxy has to deserialize the update and apply
it to its own in-memory state. If n represents the number of peers without the proxy,
the state update is first deserialized, then serialized n − 1 times and sent out to the
remaining n − 1 peers. Clearly, this way to propagate state changes is not efficient, but
technical reasons forced the developers to retain this scheme. Originally the communi-
cation framework was designed to support only point-to-point connections. The current
serialization framework is complex, operating at a very low level and a proxy did not fit
in this model, but could be easily implemented at the expense of additional serialization
costs.

Unfortunately, the scan detector generates a large amount of state updates. However,
various mitigation strategies can be employed to reduce the number of state updates.
Though we could simply turn off the scan detector and thereby expunging the majority of

42

4.3 Measurements

Figure 4.3 Communication overhead with 5 peers.

Time

In
c
o

m
in

g
 K

B
y
te

s
 i
n

 5
 m

in
u

te
s

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Sat 18:15 Sat 18:30 Sat 18:45

node1
node2
node3
node4
node5
Proxy

(a) Incoming bytes.

Time

O
u

tg
o

in
g

 K
B

y
te

s
 i
n

 5
 m

in
u

te
s

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Sat 18:15 Sat 18:30 Sat 18:45

node1
node2
node3

node4
node5
Proxy

(b) Outgoing bytes.

state updates, we want to conduct effective network intrusion detection at which the scan
detector forms an integral part of. Another way to reduce the number of state updates
would be migrating to a different traffic division scheme. For example, switching to IP
flow division (see §3.3.1) would automatically eliminate all state updates for port scans
because IP source and destination address do not change during a port scan and all
corresponding packets are thus forwarded to the same peer. A different strategy would
be to modify the scan detector itself so that it generates significantly less state updates.
To this end, one could think of local threshold for each node: only upon transgression,
inter-peer communication starts. Finally, it is possible to extend the communication
scheme. By connecting multiple proxies together, a resilient hierarchical setup could be
created at the cost of higher latency, but disburdening the particular proxies.

Finally, the volume of the transferred state updates is visualized in Figure 4.3. On the
one hand, we consider the bytes of incoming state updates in Figure 4.3(a) and on the
other hand outgoing bytes in Figure 4.3(b). Both plots have the duration of the trace
on the x-axis and the transferred state updates in kilo bytes per 5 minutes on the y-axis.

Obviously the proxy does most of the work in both cases. The mean of incoming state
updates from the proxy is 49.94 KB (standard deviation 7.35), whereas the mean of
outgoing state updates is 216.70 KB (standard deviation 31.25). Thus, the proxy sends
4.42 times more bytes than it receives. Since every incoming state update is sent out
n − 1 times to the remaining peers, these numbers roughly seem to be sound. In these
plots, we see once again that the peers perform the same amount of work because their
lines lie on top of each other.

4.3.3 Summary

Based on our observations and measurement we draw the conclusion that our NIDS
cluster can effectively conduct transparant load-balancing in high-performance environ-
ments. Transparency, as discussed in the previous chapter, is achieved by the low-level
state exchange of Bro. We verified in this chapter that the results provide the required

43

4 Cluster Evaluation

accuracy for practical appliance. Further, we investigated the performance of the cluster.
Our traffic division scheme turns out to be very fair, each cluster node is charged with
virtually the same load. In terms of scalability, we were able to run our cluster with 5
nodes successfully. Due to the complexity of the serialization framework, the centralized
communication scheme caused the proxy to be a bottleneck. Nonetheless, we proposed
various strategies to thwart this scalability limitation.

44

5 Conclusion

This last chapter summarizes our work. After recurring our observations and recapitu-
lating our contributions, we sketch promising directions for future work.

5.1 Summary

The dynamics of large-scale and high-volume networks pose ambitious challenges for
network intrusion detection. Traditional NIDSs reach their limits in these environments
because their single-machine architecture cannot cope with the induced load. Despite
closed-source solutions on expensive custom hardware, the inflexibility and limited tune-
ability of these systems motivate the creation of more flexible distributed systems to
secure the network perimeter.

In this thesis, we present an approach to effectively conduct network intrusion detec-
tion in high-performance environments. Employing commodity hardware, we devise a
cluster of communicating NIDS instances. However, the distribution of analysis entails
a significant loss of decision context for each cluster node. An important challenge is
thereby providing the nodes with the lacking context. Existing systems only correlate
aggregated high-level information, such as logs or alerts. Contrary to these strategies,
our approach originates one step lower: we leverage the flexible independent state frame-
work of the open-source NIDS Bro to build a cluster in which each node is equipped with
the same policy-neutral decision context.

To this end, we identify important concepts material to devising transparent load-
balancing systems. In order to keep a NIDS tractable, transparency creates the impres-
sion that we interact only with a single NIDS, whereas scalability paves the way for
growth in various dimensions. In addition, a flexible communication sub-system forms
a key aspect for practical realization to support different types of load-balancing.

With these concepts in mind, we set out to construct a transparent load-balancing
NIDS cluster ready for practical use in large-volume environments. Therefore, we intro-
duce new functionality to the Bro NIDS which now explicitly supports cluster architec-
tures over an expandable set of peers.

To substantiate the feasibility of our approach, we conduct accuracy and performance
related measurements. By scrutinizing the resource consumption of our cluster, we gain
insight about the CPU utilization and the involved communication overhead. Based on
our findings, we conclude that we have an effective NIDS cluster in place that meets
the challenges of large-scale networks. Our implementation is now in operational use at
the infrastructure of the Lawrence Berkeley National Laboratory, protecting the network
border and DMZ.

45

5 Conclusion

5.2 Outlook

In our work, we focused on a transparent load-balancing NIDS cluster. The next step
consists in scaling a NIDS cluster beyond local site installations. Widely distributed
network intrusion detection and prevention is a very important subject for future work
due to an increasing global threat from automated and undirected attacks. Current
Internet-scale approaches, such as DShield [DSh], turn out to be ineffectual data collec-
tion initiatives lacking the quality to produce reliable results [Som05].

In §3.2.2, we ignored geographical scalability. Yet for widely distributed network
intrusion detection, geographical scale is a key requirement in order to come up with
a fruitful solution. The more resources lie far apart, the higher becomes the latency.
Despite asynchronous communication models, various new challenges emerge in wide-
area networks. Not only does the latency increase, but also the probability of link failure
mounts. If attacks are not reported promptly, network intrusion detection is significantly
hindered.

Furthermore, geographical scale is strongly related to the limitations of centralized
solutions which restrict further growth. Many centralized components eventually limit
the system’s scale due to performance and reliability issues that wide-area communica-
tion imposes. For example, a NIDS can also span organizational boundaries, demanding
interprocess communication suitable for inherently unreliable wide-area networks. To in-
crease the overall Internet security, it is indispensable to focus on a global scale. Building
viable distributed systems in this order of magnitude is yet an ambitious on-going re-
search topic.

Turning to technical aspects, elaborating on various strategies to reduce the amount
of inter-peer communication is an important future goal. In §4.3.2, we propose several
strategies to alleviate the communication overhead. With increasing scale, the routing
scheme used to exchange state information becomes an important factor. We realized
that the central aggregation of information finally reaches is scalability limits. To avoid
hirarchies, sophisticated routing schemes, such as peer-to-peer schemes, qualify as a
resort.

46

Bibliography

[ACI] ACID. http://acidlab.sourceforge.ne.

[Bac00] Rebecca Gurley Bace. Intrusion Detection. Macmillan Technical Publishing,
2000. ISBN 1-578-70185-6.

[Bis03] Matt Bishop. Computer Security: Art and Science. Addison Wesley, 2003.
ISBN 0-201-44099-7.

[BOG03] M. Blanc, L. Oudot, and V. Glaume. Global intrusion detection: Prelude
hybrid ids. Technical report, 2003.

[Bro] Broccoli: The Bro Client Communications Library. http://www.cl.cam.

ac.uk/~cpk25/broccoli.

[BY06] Paul Barford and Vinod Yegneswaran. An inside look at botnets. In Pro-
ceedings of the Special Workshop on Malware Detection, Advances in Infor-
mation Security. Springer Verlag, 2006.

[CBR03] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. Firewalls
and Internet Security: Repelling the Wily Hacker, Second Edition. Addi-
son-Wesley, 2003. ISBN 0-201-63466-X.

[DSh] Distributed Intrusion Detection System DShield.org . http://www.dshield.
org.

[FGC+97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and
Paul Gauthier. Cluster-based scalable network services. In Symposium on
Operating Systems Principles, pages 78–91, 1997.

[FGW98] Anja Feldmann, Anna C. Gilbert, and Walter Willinger. Data Networks As
Cascades: Investigating the Multifractal Nature of Internet WAN Traffic.
In Proc. ACM SIGCOMM, 1998.

[HKP01] Mark Handley, Christian Kreibich, and Vern Paxson. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End Protocol Se-
mantics. In Proc. USENIX Security Symposium, 2001.

[HS01] James A. Hoagland and Stuart Staniford. Viewing IDS Alerts: Lessons
from SnortSnarf. In Proc. DARPA Information Survivability Conference
and Exposition, 2001.

47

Bibliography

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979. ISBN 0-201-02988-X.

[Ice] icecast. http://www.icecast.org.

[IDM] Intrusion Detection Message Exchange Format. http://www.ietf.org/

html.charters/idwg-charter.html.

[KMVV03] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna.
On the Detection of Anomalous System Call Arguments. In Proc. European
Symposium on Research in Computer Security, 2003.

[KO04] Hideki Koike and Kazuhiro Ohno. SnortView: Visualization System of
Snort Logs. In Proc. ACM Workshop on Visualization and Data Mining
for Computer Security, 2004.

[Kre05] Christian Kreibich. A Graphical Environment for Analysis of Security-
Relevant Network Activity. In Proc. Usenix Technical Conference, Freenix
Track, 2005.

[KRVV04] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vi-
gna. Static disassembly of obfuscated binaries. In Proceedings of USENIX
Security Symposium, pages 255–270. San Diego, CA, August 2004.

[KV03] Christopher Kruegel and Giovanni Vigna. Anomaly Detection of Web-based
Attacks. In Proc. ACM Conference on Computer and Communications Se-
curity, 2003.

[KVVK02] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard A. Kem-
merer. Stateful Intrusion Detection for High-Speed Networks. In Proceedings
of the IEEE Symposium on Research on Security and Privacy. IEEE Press,
Oakland, CA, May 2002.

[LBL] Lawrence Berkeley National Laboratory. http://www.lbl.gov.

[Lib] libpcap. http://www.tcpdump.org.

[MJ93] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In Proc. Winter USENIX Conference,
1993.

[Net] NetOptics. http://www.netoptics.com/.

[Neu94] Barry Clifford Neuman. Scale in Distributed Systems, pages 463–489. IEEE
Computer Society, Los Alamitos, CA, 1994.

[Pax99] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time.
Computer Networks, 31(23–24):2435–2463, 1999.

48

Bibliography

[PN97] Phillip A. Porras and Peter G. Neumann. EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances. In National Informa-
tion Systems Security Conference, 1997.

[PN98] Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection. Technical report,
Secure Networks, Inc., January 1998.

[PYB+04] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry
Peterson. Characteristics of Internet Background Radiation. In Proc. In-
ternet Measurement Conference, 2004.

[PZC+96] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, and
Ronald A. Olsson. A methodology for testing intrusion detection systems.
IEEE Transactions on Software Engineering, 22(10):719–729, 1996.

[Roe99] Martin Roesch. Snort: Lightweight Intrusion Detection for Networks. In
Proc. Systems Administration Conference, 1999.

[SF05] Lambert Schaelicke and Curt Freeland. Characterizing sources and remedies
for packet loss in network intrusion detection. In IEEE: Symposium on
Workload Characterization, 2005.

[Sky] Skype. http://www.skype.com.

[SMPW04] Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The
Top Speed of Flash Worms. In Proc. ACM Workshop on Rapid Malcode,
2004.

[Som05] Robin Sommer. Viable Network Intrusion Detection in High-Performance
Environments. PhD thesis, Technical University Munich, 2005.

[SP03] Umesh Shankar and Vern Paxson. Active Mapping: Resisting NIDS Eva-
sion Without Altering Traffic. In Proc. IEEE Symposium on Security and
Privacy, 2003.

[SP05] Robin Sommer and Vern Paxson. Exploiting Independent State For Network
Intrusion Detection. In Proc. Computer Security Applications Conference,
2005.

[SSMF03] Lambert Schaelicke, Thomas Slabach, Branden Moore, and Curt Freeland.
Characterizing the performance of network intrusion detection sensors. In
Proceedings of the Sixth International Symposium on Recent Advances in
Intrusion Detection (RAID 2003), Lecture Notes in Computer Science.
Springer-Verlag, Berlin–Heidelberg–New York, September 2003.

[Sti03] Richard Stiennon. Intrusion Detection is Dead - Long Live Intrusion Pre-
vention. Technical report, Gartner Inc., 2003.

49

Bibliography

[SWF05] Lambert Schaelicke, Kyle Wheeler, and Curt Freeland. SPANIDS: A Scal-
able Network Intrusion Detection Loadbalancer. In Conf. Computing Fron-
tiers, pages 315–322, 2005.

[Szo05] Peter Szor. The Art of Computer Virus Research and Defense. Addison-
Wesley, 2005. ISBN 0321304543.

[Tcpa] tcpdstat. http://staff.washington.edu/dittrich/talks/core02/

tools/tools.html.

[TCPb] tcpdump. http://www.tcpdump.org.

[TS02] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems – Prin-
ciples and Paradigms. Prentice Hall, 2002. ISBN 0-13-088893-1.

[UCB] University of California, Berkeley. http://www.berkeley.edu.

[VEK00] Giovanni Vigna, Steven T. Eckmann, and Richard A. Kemmerer. The STAT
Tool Suite. In Proc. DARPA Information Survivability Conference and Ex-
position, 2000.

[VK99] Giovanni Vigna and Richard A. Kemmerer. NetSTAT: A Network-based In-
trusion Detection System. Journal of Computer Security, 7(1):37–71, 1999.

[VKB01] Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a Web of
Highly-Configurable Intrusion Detection Sensors. In Proc. of Recent Ad-
vances in Intrusion Detection, number 2212 in Lecture Notes in Computer
Science, 2001.

[WTSW97] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson.
Self-Similarity Through High-Variability: Statistical Analysis of Ethernet
LAN Traffic at the Source Level. IEEE/ACM Transactions on Networking,
5(1), 1997.

50

