
The Bro Network Security Monitor

Network Forensics with Bro

Matthias Vallentin
UC Berkeley / ICSI

vallentin@icir.org

Bro Workshop 2011
NCSA, Champaign-Urbana, IL



Outline

1. The Bro Difference

2. Abstract Use Cases

3. From Post-Facto to Real-Time Analysis

2 / 23



Post-Facto Forensics

Scenario
1. You observe symptoms of infections

I Concrete: some hosts send a lot of spam
I Abstract: many connections to [insert malware country here]

2. Apparently your IDS did not trigger :-(
I Complex attack: poor/no detection strategy (APT)
I Evasion
I 0-day

→ Post-facto log analysis

What makes Bro logs well-suited for this task?
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Where Do Bro Logs Come From?
Bro event and data model

I Rich-typed: first-class networking types (addr, port, . . . )
I Deep: across the whole network stack
I Fine-grained: detailed protocol-level information
I Expressive: nested data with container types (aka. semi-structured)

Transport

(Inter)Network

ApplicationMessages

Byte stream

Packets

LinkFrames

http_request, smtp_reply, ssl_certificate

new_connection, udp_request

new_packet, packet_contents

arp_request, arp_reply
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Bro Logs?
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Bro Logs!
Events → Scripts → Logs

I Policy-neutral by default: no notion of good or bad
I Recall the separation of scripts: base vs. policy
I Forensic investigations highly benefit from unbiased information
I Hence no use of the term “alert” → NOTICE instead

I Flexible output formats:
1. ASCII
2. Binary (coming soon)
3. Custom
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Log Analysis

I What do we do with Bro’s quality logs?
I Process (ad-hoc analysis)
I Summarize (time series data, histogram/top-k, quantile)
I Correlate (machine learning, statistical tests)
I Age (elevate old data into higher levels of abstraction)

I How do we do it?
I All eggs in one basket

I SIEM: Splunk, ArcSight, NarusInsight, . . . $$$
I ELSA (Martin Holste)
I VAST (under development)

I In-situ processing
I Tools of the trade (bro-cut, awk, sort, uniq,. . . )
I MapReduce / Hadoop
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Use Case #1: Classic Incident Response

I Goal: fast and comprehensive analysis of security incidents
I Often begins with an external piece of intelligence

I “IP X serves malware over HTTP”
I “This MD5 hash is malware”
I “Connections to 128.11.5.0/27 at port 42000 are malicious”

I Analysis style: Ad-hoc, interactive, several refinements/adaptions
I Typical operations

I Filter: project, select
I Aggregate: mean, sum, quantile, min/max, histogram, top-k,

unique

⇒ Concrete starting point, then widen scope (bottom-up)
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Use Case #2: Network Troubleshooting

I Goal: find root cause of component failure
I Often no specific hint, merely symptomatic feedback

I “I can’t access my Gmail”
I Typical operations

I Zoom: slice activity at different granularities
I Time: seconds, minutes, days, . . .
I Space: layer 2/3/4/7, host, subnet, port, URL, . . .

I Study time series data of activity aggregates
I Find abnormal activity

I “Today we see 20% less outbound DNS compared to yesterday”
I Infer dependency graphs: use joint behavior from past to asses present

impact [KMV+09]
I Judicious machine learning [SP10]

⇒ No concrete starting point, narrow scope (top-down)
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Use Case #3: Combating Insider Abuse

I Goal: uncover policy violations of personnel
I Analysis procedure: connect the dots
I Insider attack:

I Chain of authorized actions, hard to detect individually
I E.g., data exfiltration

1. User logs in to internal machine
2. Copies sensitive document to local machine
3. Sends document to third party via email

I Typical operations
I Compare activity profiles

I “Jon never logs in to our backup machine at 3am”
I “Seth accessed 10x more files on our servers today”

⇒ Relate temporally distant events, behavior-based detection
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Example #1: Kaminsky Attack
1. Issue: vulnerable resolvers do not randomize DNS source ports
2. Identify relevant data: DNS, resolver address, UDP source port
3. Jot down your analysis ideas:

I “For each resolver, no connection should reuse the same source port”
I “For each resolver, connections should use random source ports”

4. Express analysis:
I “Count the number of unique source ports per resolver”

5. Use your toolbox:
I bro-cut id.resp_p id.orig_h id.orig_p < dns.log \

| awk ’$1 == 53 { print $2, $3 }’ \ # Basic DNS only
| sort | uniq -d \ # Duplicate source ports
| awk ’{ print $1 }’ | uniq # Extract unique hosts

6. Know your limitations:
I No measure of PRNG quality (Diehard tests, Martin-Löf randomness)
I Port reuse occurs eventually → false positives

7. Close the loop: write a Bro script that does the same
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http://en.wikipedia.org/wiki/Diehard_tests
http://en.wikipedia.org/wiki/Algorithmically_random_sequence


Example #1: Kaminsky Attack
Kaminsky Attack Detector

const local_resolvers = { 7.7.7.7, 7.7.7.8 }
global ports: table[addr] of set[port] &create_expire=1hr;

event dns_request(c: connection, ...)
{
local resolver = c$id$orig_h;
if ( resolver !in local_resolvers )

return;

local src_port = c$id$orig_p;
if ( src_port !in ports[resolver] )

{
add ports[resolver][src_port]:
return;
}

NOTICE(...);
}

14 / 23



Example #2: NUL-byte in Certificate
1. Issue: paypal.com\0.attacker.com → paypal.com

I Bug manifests only on client side, not during certificate registration

2. Identify relevant data: common name (CN) field
3. Jot down analysis ideas:

I “ASN.1-encoded certificates should not contain non-ASCII characters”
4. Express analysis:

I “Look for \0 in CN”
I “Look for non-ASCII chars in CN”

5. Use your toolbox:
I bro-cut subject uid < ssl.log \

| awk -f cn.awk ’{ cn = extract_cn($1); \
if (cn ~ /\x00/)

print $2 }
6. Know your limitations

I Clients may already be patched → user agent, software.bro
I MITM occurs downstream of monitor

7. Close the loop: write a Bro script that does the same
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Example #2: NUL-byte in Certificate
Detect NUL-byte in CN

event x509_certificate(c: connection, cert: X509, is_server: bool,
chain_idx: count, chain_len: count, der_cert: string)

{
local cn = "";
local s = split(cert$subject, /,/); # looks like "k1=v1,k2=v2,..."
for ( i in s )

{
local kv = split(s[i], /=/);
if ( kv[1] == "CN" )

{
cn = kv[2];
break;
}

}

if ( /\x00/ in cn )
NOTICE(...);

}
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Example #2: NUL-byte in Certificate
8. Think beyond:

I “What about other CN weirdness? Mismatching wildcard and SNI?”

Mismatching server_name and wildcarded CN suffix
bro-cut uid server_name subject < ssl.log | awk -f cn.awk '{ \

cn = extract_cn($3); \
if (cn == "" || $2 == "-") \

next; \
\

wildcard = index(cn, "*"); \
if (wildcard > 0) \
{ \

suffix = substr(cn, wildcard + 2, length(cn) - wildcard - 1); \
if (index($2, suffix) > 0) \

next; \
} \
else if ($2 == cn) \

next; \
\

print $1, $2, cn; \
}'
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Example #3: Duqu Detector

1. Issue: APT
2. Identify relevant data , network behavior

I HTTPS exchange (WinHTTP)
II HTTP GET request with PHPSESSIONID cookie → 54x54 white GIF
III HTTP POST upload default.jpg → 200 OK
→ Also peer-to-peer C&C SMB if external C&C not reachable

3. Jot down analysis ideas:
I “Follow the behavior defined by the protocol FSM”

4. Toolbox: direct use of Bro
5. Know your limitations

I APT is highly adaptive → hard to describe
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Example #3: Duqu Detector
duqu.bro

module HTTP;
export {

redef enum Notice::Type += {
Potential_Duqu_Infection

};

redef record Info += {
cookie: string &optional;
content_type: string &optional;

};

type DuquState: enum { ## The Duqu FSM.
GIF_REQUEST,
GIF_REPLY,
JPEG_REQUEST,
JPEG_REPLY

};
}
global duqus: table[addr] of DuquState; ## Duqu-infected hosts.
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https://github.com/mavam/brospects/blob/master/duqu.bro


Example #3: Duqu Detector
duqu.bro

event http_request(c: connection, method: string,
unescaped_URI: string, ...)
{
if ( method == "GET" &&

/^PHPSESSIONID=[[:alnum]]+$/ in c$http$cookie &&
/([0-9]+){3}\.[0-9]/ in c$http$host && unescaped_URI == "/" )
duqus[c$id$orig_h] = GIF_REQUEST;

#...
}

event http_reply(c: connection, version: string, code: count, ...)
{
if ( c$id$orig_h in duqus && duqus[c$id$orig_h] == GIF_REQUEST &&

version == "HTTP/1.1" && code == 200 &&
c$http$content_type == "image/gif" )

{
duqus[c$id$orig_h] = GIF_REPLY;
NOTICE([$note=Potential_Duqu_Infection, ...]);
}
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https://github.com/mavam/brospects/blob/master/duqu.bro


Questions?
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Next: You Try, We Assist!

12-1pm
Lunch (please read the exercise background story)

1-2pm: Exercise
Intelligence-Based Incident Response

2-2:50pm: Guest Talk
Bro@LBL: Operational Insights (Aashish Sharma & Jim Mellander)

3:10-4pm: Exercise
Advanced HTTP Traffic Analysis

4:10-4:35pm: Guest Talk
Analyzing and Visualizing Bro Logs with Splunk (Justin Azoff)
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http://www.bro-ids.org/bro-workshop-2011/exercises/incident-response/background.html
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