
VAST: Visibility Across Space and Time
Architecture & Usage

Matthias Vallentin
matthias@bro.org

BroCon
August 19, 2014

http://matthias.vallentin.net
mailto:matthias@bro.org

2 / 27

3 / 27

4 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

5 / 27

VAST: Visibility Across Space and Time

VAST
A unified platform for network forensics

Goals
I Interactivity

I Sub-second response times
I Iterative query refinement

I Scalability
I Scale with data & number of nodes
I Sustain high & continuous input rates

I Strong and rich typing
I High-level types and operations
I Type safety

VAST

Queries

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Data

6 / 27

VAST & Bro

Bro
I Generates rich-typed logs representing summary of activity
→ How to process these huge piles of logs?
I Fine-grained events exist during runtime only
→ Make ephemeral events persistent?

VAST: Visibility Across Space and Time
I Visibility across Space

I Unified data model: same expressiveness as Bro
I Combine host-based and network-based activity

I Visibility across Time
I Historical queries: retrieve data from the past
I Live queries: get notified when new data matches query

7 / 27

VAST & Big Data Analytics
MapReduce (Hadoop)
Batch-oriented processing: full scan of data
+ Expressive: no restriction on algorithms
- Speed & Interactivity: full scan for each query

In-memory Cluster Computing (Spark)
Load full data set into memory and then run query
+ Speed & Interactivity: fast on arbitrary queries over working set
- Thrashing when working set too large

Distributed Indexing (VAST)
Distributed building and querying of bitmap indexes
+ Fast: only access space-efficient indexes
+ Caching of index hits enables iterative analyses
- Reduced computational model (e.g., no joins in query language)

8 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

8 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

8 / 27

High-Level Architecture of VAST

Import
I Unified data model
I Sources generate events

Archive
I Stores raw data as events
I Compressed chunks & segments

Index
I Secondary indexes into archive
I Horizontally partitioned

Export
I Interactive query console
I JSON/Bro output

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

9 / 27

Query Language
Boolean Expressions

I Conjunctions &&
I Disjunctions ||
I Negations !
I Predicates

I LHS op RHS
I (expr)

Examples
I A && B || !(C && D)
I orig_h == 10.0.0.1 && &time < now - 2h
I &type == "conn" || :string +] "foo"
I duration > 60s && service == "tcp"

LHS: Extractors
I &type
I &time
I x.y.z.arg
I :type

Relational Operators
I <, <=, ==, >=, >
I in, ni, [+, +]
I !in, !ni, [-, -]
I ~, !~

RHS: Value
I T, F
I +42, 1337, 3.14
I "foo"
I 10.0.0.0/8
I 80/tcp, 53/?
I {1, 2, 3}

10 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

10 / 27

Query

client

1. Send query string to search
2. Receive query actor
3. Extract results from query

search

1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client 11 / 27

Query

client
1. Send query string to search

2. Receive query actor
3. Extract results from query

search

1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

11 / 27

Query

client
1. Send query string to search

2. Receive query actor
3. Extract results from query

search
1. Parse and validate query string

2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

src == 10.0.0.1
&&

port == 53/udp

Index

Partitions

Indexers

11 / 27

Query

client
1. Send query string to search

2. Receive query actor
3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query

3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

src == 10.0.0.1
&&

port == 53/udp

Index

Partitions

Indexers
Query

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query

3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

src == 10.0.0.1
&&

port == 53/udp

Index

Partitions

Indexers
Query

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

src == 10.0.0.1
&&

port == 53/udp

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

port == 53/udp
src == 10.0.0.1

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index

2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index

2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index
2. Ask archive for segments

3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

11 / 27

Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates

4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

11 / 27

Query

client
1. Send query string to search
2. Receive query actor
3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

11 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

11 / 27

VAST Architecture

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

12 / 27

Data Representation
Terminology

I Data: C++ structures (e.g., 64ull)
I Type: interpretation of data (e.g., count)
I Value: data + type
I Event: value + meta data

I Type with a unique name (e.g., conn)
I Meta data

I A timestamp
I A unique ID i where i ∈ [1, 264 − 1)

I Schema: collection of event types
I Chunk: serialized & compressed events

I Meta data: schema + time range + IDs
I Fixed number of events, variable size

I Segment: sequence of chunks
I Meta data: union of chunk meta data
I Fixed size, variable number of chunks

ID TIME “foo” 3.14 7 ms

META

META

TYPE

Event

Chunk

Segment

13 / 27

Types: Interpretation of Data
TYPE

record

vector set

table

KEY VALUE

TYPETYPE

field 1

TYPE

field n

TYPE

…

container types

basic types

compound types

recursive types

bool

int

count

double

time range

time point

string

regex

address

subnet

port

none

14 / 27

VAST Architecture

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

15 / 27

Index Hits: Sets of Events

Bitvector: sets of events
I Query result ≡ set of event IDs from [1, 264 − 1)
→ Model as bit vector: [4, 7, 8] = 0000100110 · · ·

Bitstream: encoded append-only sequence of bits
I EWAH (no patents unlike WAH, PLWAH, COMPAX)
I Compact, space-efficient representation
I Bitwise operations do not require decoding

Bitmap: maps values to bitstreams
I push_back(T x): append value x of type T
I lookup(T x, Op ◦): get bitstream for x under ◦

0

264 � 1

.
0
0
0
0
1
1
0
0
0
0
1
.

=

2

1

2

0

0

1

3

0

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

B1 B2 B3B0

Data Bitmap

16 / 27

Composing Results via Bitwise Operations
Combining Predicates

I Query Q = X ∧Y ∧ Z
I x = 1.2.3.4 ∧ y < 42 ∧ z ∈ ”foo”

I Bitmap index lookup yields X → B1, Y → B2, and Z → B3
I Result R = B1 & B2 & B3

& &

B1 B3

=

B2 R

17 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

17 / 27

Actor Model

Actor: unit of sequential execution
I Message: typed tuple 〈T0, . . . , Tn〉 3 Tn

I Behavior: partial function over Tn

I Mailbox: FIFO with typed messages
I Can send messages to other actors
I Can spawn new actors
I Can monitor each actors

Benefits
I Modular, high-level components
I Robust SW design: no locks, no data races
I Network-transparent deployment
I Powerful concurrency model

18 / 27

CAF: C++ Actor Framework
libcaf

I Native implementation of the actor model
I Strongly typed actors available → protocol checked at compile-time
I Pattern matching to extract messages
I Transparently supports heterogeneous components

I Intra-machine: efficient message passing with copy-on-write semantics
I Inter-machine: TCP, UDP (soon), multicast (soon)
I Special hardware components: GPUs via OpenCL

https://github.com/actor-framework
19 / 27

https://github.com/actor-framework

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

19 / 27

Getting Up and Running

Requirements
I C++14 compiler

I Clang 3.4 (easiest bootstrapped with Robin’s install-clang)
I GCC 4.9 (not yet fully supported)

I CMake
I Boost Libraries (headers only)
I C++ Actor Framework (develop branch currently)

Installation
I git clone git@github.com:mavam/vast.git && cd vast
I ./configure && make && make test && make install
I vast -h # brief help
I vast -z # complete options

20 / 27

https://github.com/rsmmr/install-clang
https://github.com/mavam/vast

VAST Architecture

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

21 / 27

Deployment
Network Transparency

I Actors can live in the same address space
→ Efficiently pass messages as pointer

I Actors can live on different machines
→ Transparent serialization of messages

Import with 2 Processes

Archive Index

Search

Receiver

Importer

One-Shot Import
Importer

Archive Index

Search

Receiver

22 / 27

Importing Logs

One-Shot Import
I vast -C -I -r conn.log
I zcat *.log.gz | vast -C -I
I vast -C -I -p partition-2014-01 < conn.log

Import with 2 Processes
I vast -C # core
I vast -I < conn.log # importer

23 / 27

VAST Architecture

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

24 / 27

Synopsis: One-Shot Queries

JSON Query
I vast -C # core
I vast -E -o json -l 5 -q ':addr in 10.0.0.0/8'

Bro Query
I vast -C # core
I vast -E -o bro -l 5 -q ':addr in 10.0.0.0/8'

25 / 27

Outline

1. Introduction: VAST

2. Architecture
Overview
Example Workflow: Query
Data Model
Implementation

3. Using VAST

4. Demo

25 / 27

Thank You. . . Questions?

_ _____ __________
| | / / _ | / __/_ __/
| |/ / __ |_\ \ / /
|___/_/ |_/___/ /_/

https://github.com/mavam/vast

IRC at Freenode: #vast

27 / 27

https://github.com/mavam/vast

	Introduction: VAST
	Architecture
	Overview
	Example Workflow: Query
	Data Model
	Implementation

	Using VAST
	Demo

