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VAST: Visibility Across Space and Time

VAST
A unified platform for network forensics

Goals
I Interactivity

I Sub-second response times
I Iterative query refinement

I Scalability
I Scale with data & number of nodes
I Sustain high & continuous input rates

I Strong and rich typing
I High-level types and operations
I Type safety

VAST

Queries

10.0.0.1  10.0.0.254  53/udp
10.0.0.2  10.0.0.254  80/tcp

Data
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VAST & Bro

Bro
I Generates rich-typed logs representing summary of activity
→ How to process these huge piles of logs?
I Fine-grained events exist during runtime only
→ Make ephemeral events persistent?

VAST: Visibility Across Space and Time
I Visibility across Space

I Unified data model: same expressiveness as Bro
I Combine host-based and network-based activity

I Visibility across Time
I Historical queries: retrieve data from the past
I Live queries: get notified when new data matches query

7 / 27



VAST & Big Data Analytics
MapReduce (Hadoop)
Batch-oriented processing: full scan of data
+ Expressive: no restriction on algorithms
- Speed & Interactivity: full scan for each query

In-memory Cluster Computing (Spark)
Load full data set into memory and then run query
+ Speed & Interactivity: fast on arbitrary queries over working set
- Thrashing when working set too large

Distributed Indexing (VAST)
Distributed building and querying of bitmap indexes
+ Fast: only access space-efficient indexes
+ Caching of index hits enables iterative analyses
- Reduced computational model (e.g., no joins in query language)
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High-Level Architecture of VAST

Import
I Unified data model
I Sources generate events

Archive
I Stores raw data as events
I Compressed chunks & segments

Index
I Secondary indexes into archive
I Horizontally partitioned

Export
I Interactive query console
I JSON/Bro output

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import
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Query Language
Boolean Expressions

I Conjunctions &&
I Disjunctions ||
I Negations !
I Predicates

I LHS op RHS
I (expr)

Examples
I A && B || !(C && D)
I orig_h == 10.0.0.1 && &time < now - 2h
I &type == "conn" || :string +] "foo"
I duration > 60s && service == "tcp"

LHS: Extractors
I &type
I &time
I x.y.z.arg
I :type

Relational Operators
I <, <=, ==, >=, >
I in, ni, [+, +]
I !in, !ni, [-, -]
I ~, !~

RHS: Value
I T, F
I +42, 1337, 3.14
I "foo"
I 10.0.0.0/8
I 80/tcp, 53/?
I {1, 2, 3}
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1. Send query string to search
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VAST Architecture

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import
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Data Representation
Terminology

I Data: C++ structures (e.g., 64ull)
I Type: interpretation of data (e.g., count)
I Value: data + type
I Event: value + meta data

I Type with a unique name (e.g., conn)
I Meta data

I A timestamp
I A unique ID i where i ∈ [1, 264 − 1)

I Schema: collection of event types
I Chunk: serialized & compressed events

I Meta data: schema + time range + IDs
I Fixed number of events, variable size

I Segment: sequence of chunks
I Meta data: union of chunk meta data
I Fixed size, variable number of chunks

ID TIME “foo” 3.14 7 ms

META

META

TYPE

Event

Chunk

Segment
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Types: Interpretation of Data
TYPE

record

vector set

table

KEY VALUE

TYPETYPE

field 1

TYPE

field n

TYPE

…

container types

basic types

compound types

recursive types

bool

int

count

double

time range

time point

string

regex

address

subnet

port

none

14 / 27



VAST Architecture
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Index Hits: Sets of Events

Bitvector: sets of events
I Query result ≡ set of event IDs from [1, 264 − 1)
→ Model as bit vector: [4, 7, 8] = 0000100110 · · ·

Bitstream: encoded append-only sequence of bits
I EWAH (no patents unlike WAH, PLWAH, COMPAX)
I Compact, space-efficient representation
I Bitwise operations do not require decoding

Bitmap: maps values to bitstreams
I push_back(T x): append value x of type T
I lookup(T x, Op ◦): get bitstream for x under ◦
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Composing Results via Bitwise Operations
Combining Predicates

I Query Q = X ∧Y ∧ Z
I x = 1.2.3.4 ∧ y < 42 ∧ z ∈ ”foo”

I Bitmap index lookup yields X → B1, Y → B2, and Z → B3
I Result R = B1 & B2 & B3

& &

B1 B3

=

B2 R
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Actor Model

Actor: unit of sequential execution
I Message: typed tuple 〈T0, . . . , Tn〉 3 Tn

I Behavior: partial function over Tn

I Mailbox: FIFO with typed messages
I Can send messages to other actors
I Can spawn new actors
I Can monitor each actors

Benefits
I Modular, high-level components
I Robust SW design: no locks, no data races
I Network-transparent deployment
I Powerful concurrency model
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CAF: C++ Actor Framework
libcaf

I Native implementation of the actor model
I Strongly typed actors available → protocol checked at compile-time
I Pattern matching to extract messages
I Transparently supports heterogeneous components

I Intra-machine: efficient message passing with copy-on-write semantics
I Inter-machine: TCP, UDP (soon), multicast (soon)
I Special hardware components: GPUs via OpenCL

https://github.com/actor-framework
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Getting Up and Running

Requirements
I C++14 compiler

I Clang 3.4 (easiest bootstrapped with Robin’s install-clang)
I GCC 4.9 (not yet fully supported)

I CMake
I Boost Libraries (headers only)
I C++ Actor Framework (develop branch currently)

Installation
I git clone git@github.com:mavam/vast.git && cd vast
I ./configure && make && make test && make install
I vast -h # brief help
I vast -z # complete options
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Deployment
Network Transparency

I Actors can live in the same address space
→ Efficiently pass messages as pointer

I Actors can live on different machines
→ Transparent serialization of messages

Import with 2 Processes

Archive Index

Search

Receiver

Importer

One-Shot Import
Importer

Archive Index

Search

Receiver
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Importing Logs

One-Shot Import
I vast -C -I -r conn.log
I zcat *.log.gz | vast -C -I
I vast -C -I -p partition-2014-01 < conn.log

Import with 2 Processes
I vast -C # core
I vast -I < conn.log # importer
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Synopsis: One-Shot Queries

JSON Query
I vast -C # core
I vast -E -o json -l 5 -q ':addr in 10.0.0.0/8'

Bro Query
I vast -C # core
I vast -E -o bro -l 5 -q ':addr in 10.0.0.0/8'
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Thank You. . . Questions?

_ _____ __________
| | / / _ | / __/_ __/
| |/ / __ |_\ \ / /
|___/_/ |_/___/ /_/

https://github.com/mavam/vast

IRC at Freenode: #vast
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