
Why Actors Rock:
Designing a Distributed Database

with libcppa

Matthias Vallentin
matthias@bro.org

University of California, Berkeley

C++Now
May 15, 2014

http://matthias.vallentin.net
mailto:matthias@bro.org


Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

1 / 13



VAST: Visibility Across Space and Time

VAST
Distributed database built with libcppa

Goals
I Scalability

I Sustain high & continuous input rates
I Linear scaling with number of nodes

I Interactivity
I Sub-second response times
I Iterative query refinement

I Strong and rich typing
I High-level types and operations
I Type safety in query language

Ingestor Ingestor Ingestor

Client Client Client

Archive Index

Search

Receiver

2 / 13



Example Use Case: Network Security Analysis

Network Forensics & Incident Response
I Scenario: security breach discovered
I Analysts tasked with determining scope and impact

Analyst questions
I How did the attacker(s) get in?
I How long did the they stay under the radar?
I What is the damage ($$$, reputation, data loss, etc.)?
I How to detect similar attacks in the future?

3 / 13



Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

3 / 13



Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

3 / 13



Ingestion

ingestor

1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor Ingestor Ingestor

Core

Client Client Client

4 / 13



Ingestion

ingestor

1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

4 / 13



Ingestion

ingestor

1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

4 / 13



Ingestion

ingestor
1. Parse input into events

2. Compress & chunk into
segments

3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

10.0.0.1 10.0.0.254 53/udp
10.0.0.2. 10.0.0.254 80/tcp

4 / 13



Ingestion

ingestor
1. Parse input into events

2. Compress & chunk into
segments

3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

10.0.0.1 10.0.0.254 53/udp

2013-08-12 12:08:32 type info

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments

3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments

3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

chunk
meta data

segment

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments

3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver

1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

Core
Receiver

Archive Index

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver
1. Accept and ACK segment

2. Assign segment an ID range
from space 264

3. Record segment schema
4. Forward segment to

archive and index

Ingestor

Source

Segmentizer

Core
Receiver

Archive Index

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver
1. Accept and ACK segment

2. Assign segment an ID range
from space 264

3. Record segment schema
4. Forward segment to

archive and index

Receiver

Archive Index

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver
1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Receiver

Archive Index

Tracker

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver
1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema

4. Forward segment to
archive and index

Receiver

Archive Index

Tracker
Search

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver
1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema

4. Forward segment to
archive and index

Receiver

Archive Index

Tracker
Search

Partitions

...

4 / 13



Ingestion

ingestor
1. Parse input into events
2. Compress & chunk into

segments
3. Send segments to receiver

receiver
1. Accept and ACK segment
2. Assign segment an ID range

from space 264

3. Record segment schema
4. Forward segment to

archive and index

Receiver

Archive Index

Tracker
Search

Partitions

...

4 / 13



Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

4 / 13



Indexing

index

1. Forward segment to
relevant partition

2. Spawn indexer for
event values

3. Unpack segment back
into events

indexer

1. Receive event
2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

5 / 13



Indexing

index
1. Forward segment to

relevant partition

2. Spawn indexer for
event values

3. Unpack segment back
into events

indexer

1. Receive event
2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

5 / 13



Indexing

index
1. Forward segment to

relevant partition
2. Spawn indexer for

event values

3. Unpack segment back
into events

indexer

1. Receive event
2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

...

Bitmap Indexers

5 / 13



Indexing

index
1. Forward segment to

relevant partition
2. Spawn indexer for

event values

3. Unpack segment back
into events

indexer

1. Receive event
2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

...

Bitmap Indexers

Unpacker

5 / 13



Indexing

index
1. Forward segment to

relevant partition
2. Spawn indexer for

event values
3. Unpack segment back

into events

indexer

1. Receive event
2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

...

Bitmap Indexers

Unpacker

5 / 13



Indexing

index
1. Forward segment to

relevant partition
2. Spawn indexer for

event values
3. Unpack segment back

into events

indexer
1. Receive event

2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

...

Bitmap Indexers

Unpacker

5 / 13



Indexing

index
1. Forward segment to

relevant partition
2. Spawn indexer for

event values
3. Unpack segment back

into events

indexer
1. Receive event
2. Select value to index

3. Report statistics back to
partition

Index

Partitions

... ...

...

Bitmap Indexers

Unpacker

5 / 13



Indexing

index
1. Forward segment to

relevant partition
2. Spawn indexer for

event values
3. Unpack segment back

into events

indexer
1. Receive event
2. Select value to index
3. Report statistics back to

partition

Index

Partitions

... ...

...

Bitmap Indexers

Unpacker

5 / 13



Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

5 / 13



Query

client

1. Send query string to search
2. Receive query actor
3. Extract results from query

search

1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Ingestor Ingestor Ingestor

Core

Client Client Client

6 / 13



Query

client

1. Send query string to search
2. Receive query actor
3. Extract results from query

search

1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client 6 / 13



Query

client
1. Send query string to search

2. Receive query actor
3. Extract results from query

search

1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

6 / 13



Query

client
1. Send query string to search

2. Receive query actor
3. Extract results from query

search
1. Parse and validate query string

2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

src == 10.0.0.1
&& 

port == 53/udp

Index

Partitions

Indexers

6 / 13



Query

client
1. Send query string to search

2. Receive query actor
3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query

3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

src == 10.0.0.1
&& 

port == 53/udp

Index

Partitions

Indexers
Query

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query

3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

src == 10.0.0.1
&& 

port == 53/udp

Index

Partitions

Indexers
Query

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

src == 10.0.0.1
&& 

port == 53/udp

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

port == 53/udp
src == 10.0.0.1

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

1 = “mass”

10100010011100

0 = empty

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query

1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index

2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index

2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index
2. Ask archive for segments

3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

6 / 13



Query

client
1. Send query string to search
2. Receive query actor

3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates

4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

6 / 13



Query

client
1. Send query string to search
2. Receive query actor
3. Extract results from query

search
1. Parse and validate query string
2. Spawn dedicated query
3. Forward query to index

query
1. Receive hits from index
2. Ask archive for segments
3. Extract events, check candidates
4. Send results to client

Client

Search

Index

Partitions

Indexers
Query

Archive

6 / 13



Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

6 / 13



Issue #1: Bufferbloat
Bufferbloat
Large buffers cause high latency and jitter

Aside: Go
goroutines execute concurrently and exchange messages via channels

I Sender blocks when channel is full
I Receiver blocks when channel is empty

→ Explicit notion of buffer
I libcppa : no blocking to signal overload

Bufferbloat in VAST
I Large segments (128MB)
I Data flow rates

I Ingestion: 80k–100k events/sec
I Indexing: 20k–200k events/sec

→ Sender overloads receiver: system runs out-of-memory
7 / 13



Solution #1: Flow Control

Flow Control
Feedback on capacity from overloaded resource up to sender

Revised indexing process
1. partition spawns indexers and dispatches events

I Queue length: number of events sent to indexer
2. Indexers report back how many events they have indexed

I Decreases queue length by events processed
3. Receiver polls index every 100ms for maximum queue length

I If watermark reached, tell ingestors to stop
I If watermark cleared, tell ingestors to go

8 / 13



Problem #2: Data Structure Inflation

Initial indexing process
1. Unpack segment
2. Create one vector<event> for meta indexes (across events)
3. Create one vector<event> for data indexes (per event)
4. Forward to events to the corresponding indexers

Issues
1. Memory overhead from maintaining multiple different data slices
2. Effect exacerbated by buffer bloat

9 / 13



Solution #2: Data Sharing

Intra-Process Performance
Share data intelligently instead of partitioning it beforehand

Revised indexing process
I Do not “inflate” data just to partition it for workers
I GPGPU-style: make data available “globally” in workers

I Disburdens CPU: no time needed to transform data
I Reduces memory footprint: data exists exactly once

10 / 13



Problem #3: Messaging Complexity

Complex Query processing
A query actor receives messages from archive, index, and client

I query acts as “iterator” over the archive for index hit
I Maintains lots of state for incremental extraction of matches
I Difficult to implement correctly when messages arrive in any order
I Many if-then-else constructs clutter main logic

11 / 13



Solution #3: State Machine
Finite State Machine
Implement stateful logic with a finite state machine

Revised query process
I Each state defines a set

of valid messages
I Explicit transitions make

readable and clear code
I libcppa primitive:

become/unbecome

extracting

waiting

failed

idle ready

done

hits
arrive

segment
arrives

user triggers
extraction

finishes segment,
more segments available

finishes segment,
need more hits

finishes segment,
no more segments

experiences
unrecoverable error

extract fewer events
than available in segment

all hits arrived,
no hits to process

12 / 13



Summary & Lessons Learned

Lesson #1
Programming distributed systems feels like “networking”

I Flow control prevents imbalanced sender/receiver speeds
I Bufferbloat increases latency and causes processing spikes
I Explicit state machines keep asynchronous messaging manageable

Lesson #2
GPGPU programming style fits well for intra-process concurrency

I Make full data available to all workers
I Each worker is responsible for extracting its relevant data

13 / 13



Outline

1. System Overview: VAST

2. Architecture: Ingestion, Indexing, and Query
Ingestion
Indexing
Query

3. Experience

4. Demo

13 / 13



Thank You. . . Questions?

FIN
https://github.com/mavam/vast

https://github.com/Neverlord/libcppa

IRC at Freenode: #vast, #libcppa

1 / 1

https://github.com/mavam/vast
https://github.com/Neverlord/libcppa

	System Overview: VAST
	Architecture: Ingestion, Indexing, and Query
	Ingestion
	Indexing
	Query

	Experience
	Demo
	Appendix

