
Towards Large-Scale Incident Response and
Interactive Network Forensics

Matthias Vallentin
UC Berkeley / ICSI

vallentin@icir.org

Dissertation Proposal
UC Berkeley

December 14, 2011

http://matthias.vallentin.net
mailto:vallentin@icir.org

April 21, 2009: Bad News for UC Berkeley

2 / 63

Blind SQL Injection
Havij
..?deploy_id=799+and+ascii(substring((database()),1,1))<79 31
..?deploy_id=799+and+ascii(substring((database()),1,1))<103 11582
..?deploy_id=799+and+ascii(substring((database()),1,1))<91 31
..?deploy_id=799+and+ascii(substring((database()),1,1))<97 31
..?deploy_id=799+and+ascii(substring((database()),1,1))<100 11582
..?deploy_id=799+and+ascii(substring((database()),1,1))=99 11582
..?deploy_id=799+and+ascii(substring((database()),2,1))<79 31
..?deploy_id=799+and+ascii(substring((database()),2,1))<103 31
..?deploy_id=799+and+ascii(substring((database()),2,1))<115 11582
..?deploy_id=799+and+ascii(substring((database()),2,1))<109 11582
..?deploy_id=799+and+ascii(substring((database()),2,1))<106 11582
..?deploy_id=799+and+ascii(substring((database()),2,1))=105 11582
..?deploy_id=799+and+ascii(substring((database()),3,1))<79 31
..?deploy_id=799+and+ascii(substring((database()),3,1))<103 11582
..?deploy_id=799+and+ascii(substring((database()),3,1))<91 31

Database name: ci...

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727) Havij
3 / 63

Example: Debugging an APT Incident
Advanced Persistent Threat (APT)
Severe security breaches manifest over large time periods
1. Initial compromise: stealthy and inconspicuous
2. Maintenance: periodic access checks
3. Sudden strike: quick and devastating

or
3. Continuous leakage: piecemeal exfiltration under the radar

Analyst questions
I How did the attacker get in?
I How long did the attacker stay under the radar?
I What is the damage?
I Was an insider involved?
I How to detect similar attacks in the future?
I How do we describe the attack?

4 / 63

Incident Response Challenges and the Sobering Reality

Challenges
I Volume: machine-generated data exceeds our analysis capacities
I Heterogeneity: multitude of data and log formats
I Procedure: unsystematic investigations

Reality
I Reliance on incomplete context
I Manual ad-hoc analysis
I UNIX tools (awk, grep, uniq)
I Expert islands

How do we tackle this situation?

5 / 63

Thesis Statement
Hypothesis
Key operational networking tasks, such as incident response and forensic
investigations, base their decisions on descriptions of activity that are
fragmented across space and time:

I Space: heterogeneous data formats from disparate sources
I Time: discrepancy in expressing past and future activity

Statement
We can design and build a system to attain a unified view across space and
time.

past present future past present future

6 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

7 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

8 / 63

Basic Network Monitoring

Internet Local NetworkTap

Monitor

I Passive tap splits traffic
I Optical
I Coppper
I Switch span port

I Monitor receives full packet stream
→ Challenge: do not fall behind processing packets!

9 / 63

High-Performance Network Monitoring:
The NIDS Cluster [VSL+07]

Internet Local NetworkTap

Frontend

Manager

Packets
Logs
State

Worker Worker Worker

User

10 / 63

The NIDS Cluster

I Contributions
I Design, prototype, and evaluation of cluster architecture
I Bro scripting language enhancements

I Runs now in production at large sites with a 10 Gbps uplink:
I UC Berkeley (26 workers), 50,000 hosts
I LBNL (15 workers), 12,000 hosts
I NCSA (10 × 4-core workers), 10,000 hosts

I Generates follow-up challenges
I How to archive and process the output of the cluster?
I How to efficiently support incident response and network forensics?

11 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

12 / 63

Use Case #1: Classic Incident Response

I Goal: quickly isolate scope and impact of security breach
I Often begins with a piece of intelligence

I “IP X serves malware over HTTP”
I “This MD5 hash is malware”
I “Connections to 128.11.5.0/27 at port 42000 are malicious”

I Analysis style: Ad-hoc, interactive, several refinements/adaptions
I Typical operations

I Filter: project, select
I Aggregate: mean, sum, quantile, min/max, histogram, top-k,

unique

⇒ Bottom-up: concrete starting point, then widen scope

13 / 63

Use Case #2: Network Troubleshooting

I Goal: find root cause of component failure
I Often no specific hint, merely symptomatic feedback

I “Email does not work :-/”
I Typical operations

I Zoom: slice activity at different granularities
I Time: seconds, minutes, days, . . .
I Space: layer 2/3/4/7, protocol, host, subnet, domain, URL, . . .

I Study time series data of activity aggregates
I Find abnormal activity

I “A sudden huge spike in DNS traffic”
I Use past behavior to determine present impact [KMV+09] and predict

future [HZC+11]
I Judicious machine learning [SP10]

⇒ Top-down: start broadly, then narrow scope incrementally

14 / 63

Use Case #3: Combating Insider Abuse

I Goal: uncover policy violations of personnel
I Insider attack:

I Chain of authorized actions, hard to detect individually
I E.g., data exfiltration

1. User logs in to internal machine
2. Copies sensitive document to local machine
3. Sends document to third party via email

I Analysis procedure: connect the dots
I Identify first action: gather and compare activity profiles

I “Vern accessed 10x more files on our servers today” [SS11]
I “Ion usually does not log in to our backup machine at 3am”

I Identify last action:
I Filter fingerprints of sensitive documents at border
I Reinspect past activity under new bias

⇒ Relate temporally distant events

15 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

16 / 63

Descriptions of Activity: Bro Event Trace

I Use Bro event trace
→ Descriptions of activity
I Instrumentation: meta events

I Timestamp
I Name
I Size

I Generate from real UCB traffic

Trace Details
I October 17, 2011, 2:35pm, 10 min
I 219 GB
I 284,638,230 packets
I 6,585,571 connections Network

Event Engine

Script Interpreter

Packets

Events

Logs Notifications

Workload

17 / 63

Event Workload of one node (1/26)

0 100 200 300 400 500 600

50
00

10
00

0
15

00
0

20
00

0

Time (seconds)

E
ve

nt
s

pe
r

se
co

nd

5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event rate (# events/sec)
E

C
D

F

Estimator Events/sec MB/sec

Median 10,760 13.4
Mean 10,370 14.2
Peak 22,460 35

→ need to support peaks of 106 events/sec and 1 GB/sec 18 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

19 / 63

Requirements

I Interactivity
I Security-related incidents are time-critical

I Scalability
I Distributed system to handle high ingestion rates
I Aging: graceful roll-up of older data

I Expressiveness
I Represent arbitrary activity

I Result Fidelity
I Trade latency for result correctness

I Analytics & Streaming
I A unified approach to querying historical and live data

20 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

21 / 63

Traditional Views

I Data Base Management Systems (DBMS)
I Store first, query later
+ Generic
– Monolithic

I Data Stream Management Systems (DSMS)
I Process and discard
+ High throughput
– No persistence

I Online Transactional Processing (OLTP)
I Small transactional inserts/updates/deletes
+ Consistency
– Overhead

I Online Analytical Processing (OLAP)
I Aggregation over many dimensions
+ Speed
– Batch loads

22 / 63

Newer Movements

I NoSQL
+ Scalability
– Flexibility

I MapReduce
+ Expressive
– Batch processing

I In-memory Cluster Computing
+ Speed
– Streaming data, initial load

23 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

24 / 63

VAST: Visibility Across Space and Time

VAST
I Visibility

I Realize interactive data explorations
I Across space:

I Unify heterogeneous data formats
I Across time:

I Express past and future behavior uniformly

past present future

25 / 63

Bro’s Data Model: Declaration and Instantiation
I Rich-typed: first-class networking types (addr, port, subnet, . . .)
I Semi-structured: nested data with container types

Event declaration (simplified)

type connection: record { orig: addr, resp: addr, ... }
event connection_established(c: connection)
event http_request(c: connection, method: string, URI: string)
event http_reply(c: connection, status: string, data: string)

Event instantiation

connection_established({127.0.0.1, 128.32.244.172, ... })
http_request({127.0.0.1, 128.32.244.172, ..}, "GET", "/index.html")
http_reply({127.0.0.1, 128.32.244.172, ..}, "200", "<!DOCTYPE ht..")
http_request({127.0.0.1, 128.32.244.172, ..}, "GET", "/favicon.ico")
http_reply({127.0.0.1, 128.32.244.172, ..}, "200", "\xBE\xEF\x..")
connection_established({127.0.0.1, 128.32.112.224, ... })

26 / 63

Network-Wide Unified Representation of Activity

27 / 63

Expressing Behavior Between Events [VHM+11]

28 / 63

VAST: Architecture Overview

I Distributed architecture
I Elasticity via MQ middle layer
I Exchangeability of

components

I DFS: fault-tolerance, replication
I Archive: key-value store

I Contains serialized events
I Store

I Partitioned in-memory
column-store

I Cache semantics (e.g., LRU)
I Indexing via compressed

bitmaps

StoreArchive

DFS

Ingest Query

29 / 63

Software Reuse

I Don’t build from scratch unless necessary
I Reuse?

I Streaming: SparkStream
I Archive: Spark, memcached
I Query engine: Shark
I DFS: HDFS, KFS

I Build
I Store
I Glue for unified data model

30 / 63

Distributed Ingestion

31 / 63

Ingest

1. Events arrive at Event Router
1.1 Assign UUID x
1.2 Put (x, event) in archive
1.3 Forward event to Indexer
1.4 Forward event to Stream

Manager
2. Indexer writes event into tablet

I Group related activity
3. Tablet Manager flushes “ripe”

tablets based on
I Reached capacity (bytes or

events)
I Last access
I Age

Query

Store
Event
Router

Tablets

Tablet
Manager

Indexer

flush

ripe?

DFS

put

Tablets

write

Archive

Stream
Manager

32 / 63

Query

1. User or NIDS issues query
2. Query Manager

I Distributes query to data
nodes

I Spins up new nodes
3. Proxy hits tablet index

a Generates direct result (as
tablet)

b Returns set of UUIDs
→ Archive lookup

4. Tablet Manager
I Flush and load tablets

Query

Store

Tablets

Tablet
Manager

Proxy

flush

evict

DFS Tablets

Archive

Stream
Manager

query

load

Query
Manager

get

33 / 63

Meeting the Requirements

I Interactivity
→ In-memory cache of tablets
→ (Bitmap) Indexing

I Scalability
→ Messaging middle-layer (MQ)
→ Distributed architecture

I Expressiveness
→ Data: Bro’s event model
→ Query: Rich inter-event relationships

I Result Fidelity
→ Sampling & Bootstrapping

I Analytics & Streaming
→ Historical queries: tablet-based storage + archive
→ Live queries: stream processing engine

34 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

35 / 63

Roadmap

1. Identify Building Blocks
I What existing systems to leverage?
I What to build? What not?
→ Time Estimate: 1 month

2. Infrastructure
I Core data structures to represent activity
I Message-passing middle layer
→ Time Estimate: 1-2 months

3. Ingestion
I How to handle high-volume event stream?
I Provide circular buffer semantics: recent activity in-memory
→ Time Estimate: 2 months

36 / 63

Roadmap
4. Query

I Express and implement data queries: historical & live
I Express and implement behavior models
I Bounding errors: trading accuracy for latency
→ Time Estimate: 3-4 months

5. Testing Usability
I Bring in early adopters: ICSI, LBNL, NCSA
I Deploy-measure-tweak cycle: integrate feedback, fix bugs
→ Time Estimate: 1 month

6. Real-World Evaluation
I Use the system in production for real incidents
I Learn how effectively it supports incident response & forensics
→ Time Estimate: 2 month

7. Tuning
I Time: Build bitmap indexing on top of tablet store
I Space: elevate old activity into higher-level abstractions (aging)
I Address the lessons learned from the evaluation
→ Time Estimate: 3-4 months

37 / 63

Outline

1. Prior Work: Building a NIDS Cluster

2. Use Cases

3. Workload Characterization

4. Requirements

5. Related Work

6. Architecture

7. Roadmap

8. Summary

38 / 63

Recapitulation

1. Large-scale operational network analysis is ill-supported today
I No homogeneous representation of activity
I Dealing with past activity differs from expressing future events

2. We need an integrated platform to better support these tasks
3. Derived requirements based on workload characterization
4. Presented an architecture draft

39 / 63

Thank You

FIN

40 / 63

References I

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R.E. Gruber.
Bigtable: A Distributed Storage System for Structured Data.
ACM Transactions on Computer Systems (TOCS), 26(2):1–26, 2008.

A. Colantonio and R. Di Pietro.
Concise: Compressed ’n’ Composable Integer Set.
Information Processing Letters, 110(16):644–650, 2010.

Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos.
NET-FLi: On-the-fly Compression, Archiving and Indexing of
Streaming Network Traffic.
Proceedings of the VLDB Endowment, 3:1382–1393, September 2010.

41 / 63

References II

Amir Houmansadr, Ali Zand, Casey Cipriano, Giovanni Vigna, and
Christopher Kruegel.
Nexat: A History-Based Approach to Predict Attacker Actions.
In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC ’11, Orlando, Florida, December 2011.

Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal,
Jitendra Padhye, and Paramvir Bahl.
Detailed Diagnosis in Enterprise Networks.
In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, SIGCOMM ’09, pages 243–254, New York, NY, USA,
2009. ACM.

Andrew Lamb.
Building Blocks for Large Analytic Systems.
In 5th Extremely Large Databases Conference, XLDB ’11, Menlo Park,
California, October 2011.

42 / 63

References III

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, and Theo Vassilakis.
Dremel: Interactive Analysis of Web-Scale Datasets.
Proceedings of the VLDB Endowment, 3(1-2):330–339, September
2010.

Robert Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan.
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming, 13(4):277–298, 2005.

Robin Sommer and Vern Paxson.
Outside the Closed World: On Using Machine Learning for Network
Intrusion Detection.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 305–316, Washington, DC, USA, 2010. IEEE Computer
Society.

43 / 63

References IV

Malek Ben Salem and Salvatore J. Stolfo.
Modeling User Search Behavior for Masquerade Detection.
In Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection, RAID ’11, Menlo Park, CA, 2011.

Arun Viswanathan, Alefiya Hussain, Jelena Mirkovic, Stephen Schwab,
and John Wroclawski.
A Semantic Framework for Data Analysis in Networked Systems.
In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI ’11, Boston, MA, 2011. USENIX
Association.

44 / 63

References V

Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern
Paxson, and Brian Tierney.
The NIDS Cluster: Scalably Stateful Network Intrusion Detection on
Commodity Hardware.
In Proceedings of the 10th International Conference on Recent
Advances in Intrusion Detection, RAID ’07, pages 107–126, Gold
Goast, Australia, September 2007. Springer.

Kesheng Wu, Ekow J. Otoo, Arie Shoshani, and Henrik Nordberg.
Notes on Design and Implementation of Compressed Bit Vectors.
Technical Report LBNL-3161, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA, 94720, 2001.

Kesheng Wu.
FastBit: an Efficient Indexing Technology for Accelerating
Data-Intensive Science.
Journal of Physics: Conference Series, 16:556–560, 2005.

45 / 63

References VI

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica.
Spark: Cluster computing with working sets.
In Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, HotCloud ’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

46 / 63

Backup Slides

47 / 63

Illustrating Bottom-Up Data Navigation

⇡�

↵�

⇡

�

�

48 / 63

Illustrating Top-Down Data Navigation

⇡� �

�

↵

� revert

49 / 63

Illustrating Insider Abuse Data Navigation

� �

Bro

50 / 63

The Bro Network Security Monitor

I Fundamentally different from other IDS
I Network analysis platform
I Policy-neutral at the core
I Highly stateful

Key components
1. Event engine (core)

I TCP stream reassembly
I Protocol analysis

2. Script interpreter
I “Domain-specific Python”
I Generates extensive logs

User Interface

Network

Event Engine

Script Interpreter

Packets

Events

Logs Notifications

51 / 63

Generating and Receiving Bro Events

Broccoli
I C library
I Send/Receive Bro events
I Language bindings

I Ruby
I Python
I Perl

→ Anyone can generate/receive events Network

 Event Engine

Script Interpreter

Packets

Events

Logs Notifications

3rd-party
Application

Broccoli
Events

C
om

m

(Broccoli = Bro client communications library)

52 / 63

Publish/Subscribe in the Bro Event Model

3rd-party
Application

Broccoli

Bro

Apache

Broccoli

OpenSSH

Broccoli

53 / 63

Expressing Behavior [VHM+11]

I Requirements
I Analysis over multi-type, multi-variate, timestamped data
I Analysis over higher-level abstractions
I Composition of abstractions
I A wide variety of relationships

I Relationships
I Causality
I Partial or total ordering
I Dynamic changes over time
I Concurrency
I Polymorphism
I Synchronous and asynchronous operations
I Eventual operations
I Value dependencies
I Invariants
I Basic relations: boolean operators, loops, etc.

54 / 63

Expressing Behavior Between Events [VHM+11]

55 / 63

Inspirations

1. Dremel [MGL+10]
I In-situ data access
I Columnar storage
I Nested data model

2. Bigtable [CDG+08]
I Sharding: distributed tablets

3. Sawzall [PDGQ05]
I Aggregators: sample, sum, maximum, quantile, top-k, unique

4. Spark [ZCF+10]
I In-memory computation
I Iterative processing

5. FastBit [Wu05]
I Bitmap indexes

56 / 63

Design Philosophy Touch Stones [Lam11]
Storage

I Keep data sorted → reduce seeks, easy random entry
I Shard with access locality → minimize involved nodes
I Store data in columns → don’t waste I/O
I Use append-only disk format → avoid expensive index updates

Compute
I Use disk appropriately → large sequential reads
I Trade CPU for I/O → type-specific, aggressive compression
I Use pipelined parallelism → hide latency
I Ship compute to data → aggregation serving tree

Query
I Make it user-friendly → declarative query interface
I Provide query hooks → support complex analysis

57 / 63

Taxonomy Grammar

taxonomy ::= typdef* | event+
typedef ::= name, type
event ::= name, argument*, attribute*
argument ::= name, type, attribute*
attribute ::= key, value?
type ::= basic | domain | complex
basic ::= bool | count | int | double | string
domain ::= addr | port | subnet | time | interval
complex ::= enum | vector | set | map | record
record ::= argument+

58 / 63

Event Reordering in NET-FLi
via Locality-Sensitive Hashing (oLSH) [FSV10]

59 / 63

Effect of LSH [FSV10]

60 / 63

Bitmap Indexes

I Column cardinality: # distinct values
I One bitmap bi for each value i

I Sparse, but compressible
I WAH [WOSN01]
I COMPAX [FSV10]
I Consice [CDP10]

I Can operate on compressed bitmaps
I No need to decompress

2

1

2

0

0

1

3

0

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

b1 b2 b3b0

Data Bitmap Index

61 / 63

Bitmap Index Operations

& &

b1 b2 b3 r

=

62 / 63

Bitmap Index Retrieval

⌘ {i1, i2, i3, . . .} Archive

Query
Manager

63 / 63

	Prior Work: Building a NIDS Cluster
	Use Cases
	Workload Characterization
	Requirements
	Related Work
	Architecture
	Roadmap
	Summary

