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∗UC Berkeley, †HAW Hamburg, ‡FU Berlin, §ICSI Berkeley

University of California

Problem Statement
Network forensics today suffers from:

•Huge amount of activity to store for later inspection
•Numerous different data formats
•Separate analysis procedures for past and future activity
⇒Time-consuming and complex process

Goals
Need a better approach with the following properties [1]:

• Interactive work flow
– Sub-second response times
– Iterative query refinements
•Scalable in terms of data and compute

– Handle distributed ingestion and at high rates
– Asynchronous query execution
– Graceful aggregation of older data
•Expressive and easy to learn

– Represent activity in a unified data model
– Same procedures to analyze past and future data

Requirements
To achieve these goals, we need a platform that is:

1. Distributed: scale with number of nodes
2. Reliable: fault isolation & local recovery
3. Type-safe: check protocols statically at compile time
4. Adaptive: dynamic provisioning & deployment

⇒ Ideal fit for the actor model of computation
•Actor: primitive for parallel computations
•Network-transparent message passing
•Actors can dynamically spawn more actors
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CAF offers building blocks meeting these requirements.

VAST: Visibility Across Space and Time

Use Cases
• Incident response

– Goal: identify scope of security breach
– Begins with a piece of intelligence
– Ad-hoc, interactive analysis style
⇒Concrete start, then widen scope

•Network troubleshooting
– Goal: find root cause of failure
– Only symptoms visible
⇒Start broadly, then narrow scope

•Combating insider abuse
– Goal: uncover policy violations
– Attack: chain of authorized actions
– Analysis style: “connect the dots”
⇒Relate temporally distant events

Architecture
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•Rich typing
– Facilitate domain-specific analyses
– Expressive and generic
•Strong typing

– Clear and intuitive query semantics
– Type-specific optimization opportunities

CAF: C++ Actor Framework

Overview
A framework for building high-performance concurrent applications
and distributing systems at scale [2]:

•Lightweight actor implementation
– Actors have only a few hundred bytes overhead
– Spawn millions of actors without performance penalty

•Type-safe messaging interfaces, checked at compile time
– Actor protocol verified during development
– No type errors at runtime, even in distributed scenarios

•Adaptive platform for heterogeneous systems
– Actors can run on different nodes using different OSes
– Actors can run on GPUs via OpenCL bindings

•Dynamic and extensible
– Enables developers to deploy actors at runtime
– Configurable scheduling to match application needs

Minimal Example
using server = 
  typed_actor<replies_to<int,int>::with<int>>;

server::behavior_type adder() { return {
 [](int a, int b) {
  return a + b; 
 }
};}

void run(server s) {
 scoped_actor self;
 self->sync_send(s, 40, 2).await(
  [](int result) {
   cout << "40 + 2 = " << result << endl;
  }
 );
 self->send_exit(s, exit_reason::user_shutdown);
}

int main() {
 run(spawn_typed(adder));
 await_all_actors_done();
 shutdown();
}

CAF: Performance Example
Use case: CPU-intense tasks & token passing in rings
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Actor Model Implementations

⇒CAF scales to many cores with minimal RAM usage
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