Native Actors: How to Scale Network Forensics

Hochschule fur Angewandte

Wissenschaften Hamburg
Hamburg University of Applied Sciences

University of California

B k 1 Matthias Vallentin*, Dominik Charousset!,
CLKE Qy Thomas C. Schmidt', Vern Paxson*3, Matthias Wihlisch®

“UC Berkeley, THAW Hamburzg, YFU Berlin, SICSI Berkeley

Problem Statement VAST: Visibility Across Space and Time CAF: Performance Example

Network forensics today suffers from: Use case: CPU-intense tasks & token passing in rings

Use Cases Architecture Type System

e Huge amount of activity to store for later inspection 4001 ]

e Numerous different data formats ¢ Incident response

TYPE 3504 —— scala .

10 .254 53/udp
10

.254 80/tcp

e Separate analysis procedures for past and future activity — Goal: 1dentity scope of security breach
— Begins with a piece of intelligence

bool string

= Time-consuming and complex process

vector set

int regex

record

count address ( TYPE ) ( TYPE ) ///

— Ad-hoc, interactive analysis style -

Time [s]

= Concrete start, then widen scope i | doubte cubet v fieta 1 | tieta n
Goals : : time range port /table\
. ' : o - (kev ) ((vawe) @ @
Need a better approach with the following properties [1]: o Network troubleshooting i / £ : e o
e Interactive work flow _goik find root CaFS.;;)f failure i B i . - —— j 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
: — OUnly symptoms visible | | ~ —
— Sub-second response times Y Symp BR==S=SS | pasic types recursive types Number of Cores [#]
. = Start broadly, then narrow scope T | 650
— Iterative query refinements | Archive L= | : : ] ' ' ' ]
| Index e Rich typing 600 - _ i
Scalable in terms of data and compute ine insi : | . . . 550 1 X ]
* o . . P . e Combating insider abuse i | — Facilitate domain-specific analyses 500 - ]
—Handle distributed ingestion and at high rates — Goal: uncover policy violations I Ny AU W N ! — Expressive and generic s 328{ T ] :
— Asynchronous query execution _ : ' : ' : g 4004 )
y u qu. y Attack: chain of authorized actions S L~ e Strong typing 5 350- :
— Graceful aggregation of older data — Analysis style: “connect the dots” = Ny L . T 300- :
. | . XJ% T — Clear and 1ntuitive query semantics D 5ep] ) ]
e Expressive and easy to learn = Relate temporally distant events Export : S . S 200- ]
T . — Type-specific optimization opportunities k= - _
—Represent activity in a unified data model g iggz E
— Same procedures to analyze past and future data s0{ 1 | ]
CAF: C++ Actor Framework 0 * o~ -
: Actor Model Implementati
Requirements Overview Minimal Example o

To achieve these goals, we need a platform that is: = CAF scales to many cores with minimal RAM usage

A framework for building high-performance concurrent applications |
uslng server =

L. Distributed: scale with number of nodes and distributing systems at scale [2]: typed actor<replies to<int,int>::with<int>>;
2. Reliable: fault i1solation & local recovery . . . . Reterences
e Lightweight actor implementation server: :behavior type adder() { return {

[1] M. Allman, C. Kreibich, V. Paxson, R. Sommer, and N. Weaver, “Principles
for developing comprehensive network visibility,” in Proc. of Workshop on Hot
Topics in Security (HotSec), Jul. 2008.

3. Type-safe: check protocols statically at compile time [1(int a, int b) {

return a + b;

— Actors h ly a few hundred byt head
4. Adaptive: dynamic provisioning & deployment Clo1s lidve only d 1ew htndred byles overhed

—Spawn millions of actors without performance penalty } | | o
Ideal fit for th t del of tati ys) [2] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wihlisch, “Native Actors —
= ldea or the actor moael ol computation ! A Scalable Software Platform for Distributed, Heterogeneous Environments,”
e Actor: primitive for parallel computations 0 e Type-safe messaging interfaces, checked at compile time void run(server s) }I; }I)’ZIZCS- ;rfl] ?)Cl\é/ gfgggg’, COZJé KZL gsiegg,l §r0gramming, and Applications
’ ; , UCL. .
e Network-transparent message passing O — Actor protocol verified during development scoped_actor self;
. : : .o : self->sync send(s, 40, 2).await(
e Actors can dynamically spawn more actors —No type errors at runtime, even 1n distributed scenarios [](int result) { ' '
cout << "40 + 2 = " << result << endl;
ctor cior e Adaptive platform for heterogeneous systems } E E
: . : ) 7 .
A C — Actors can run on different nodes using different OSes self->send_exit(s, exit_reason::user_shutdown);
ctor — Actors can run on GPUs via OpenCL bindings } E
B int main() {
FIFO mailbox . :
¢ Dynamic and extensible run(spawn_typed(adder)); VAST CAF
_ Enables developers to deplOy actors at runtime await all actors done(); https://github.com/mavam/vast http://actor-framework.org

CAF offers building blocks meeting these requirements. shutdown () ;

— Configurable scheduling to match application needs }


https://github.com/mavam/vast
http://actor-framework.org

