
“poster” — 2014/8/13 — 16:06 — page 1 — #1

Native Actors: How to Scale Network Forensics
Matthias Vallentin∗, Dominik Charousset†,

Thomas C. Schmidt†, Vern Paxson∗§, Matthias Wählisch‡
∗UC Berkeley, †HAW Hamburg, ‡FU Berlin, §ICSI Berkeley

University of California

Problem Statement
Network forensics today suffers from:

•Huge amount of activity to store for later inspection
•Numerous different data formats
•Separate analysis procedures for past and future activity
⇒Time-consuming and complex process

Goals
Need a better approach with the following properties [1]:

• Interactive work flow
– Sub-second response times
– Iterative query refinements
•Scalable in terms of data and compute

– Handle distributed ingestion and at high rates
– Asynchronous query execution
– Graceful aggregation of older data
•Expressive and easy to learn

– Represent activity in a unified data model
– Same procedures to analyze past and future data

Requirements
To achieve these goals, we need a platform that is:

1. Distributed: scale with number of nodes
2. Reliable: fault isolation & local recovery
3. Type-safe: check protocols statically at compile time
4. Adaptive: dynamic provisioning & deployment

⇒ Ideal fit for the actor model of computation
•Actor: primitive for parallel computations
•Network-transparent message passing
•Actors can dynamically spawn more actors

actor
A

actor
B

actor
C

FIFO mailbox

CAF offers building blocks meeting these requirements.

VAST: Visibility Across Space and Time

Use Cases
• Incident response

– Goal: identify scope of security breach
– Begins with a piece of intelligence
– Ad-hoc, interactive analysis style
⇒Concrete start, then widen scope

•Network troubleshooting
– Goal: find root cause of failure
– Only symptoms visible
⇒Start broadly, then narrow scope

•Combating insider abuse
– Goal: uncover policy violations
– Attack: chain of authorized actions
– Analysis style: “connect the dots”
⇒Relate temporally distant events

Architecture

Archive Index

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Export

Import

Type System
TYPE

record

vector set

table

KEY VALUE

TYPETYPE

field 1

TYPE

field n

TYPE

…

container types

basic types

compound types

recursive types

bool

int

count

double

time range

time point

string

regex

address

subnet

port

none

•Rich typing
– Facilitate domain-specific analyses
– Expressive and generic
•Strong typing

– Clear and intuitive query semantics
– Type-specific optimization opportunities

CAF: C++ Actor Framework

Overview
A framework for building high-performance concurrent applications
and distributing systems at scale [2]:

•Lightweight actor implementation
– Actors have only a few hundred bytes overhead
– Spawn millions of actors without performance penalty

•Type-safe messaging interfaces, checked at compile time
– Actor protocol verified during development
– No type errors at runtime, even in distributed scenarios

•Adaptive platform for heterogeneous systems
– Actors can run on different nodes using different OSes
– Actors can run on GPUs via OpenCL bindings

•Dynamic and extensible
– Enables developers to deploy actors at runtime
– Configurable scheduling to match application needs

Minimal Example
using server =
 typed_actor<replies_to<int,int>::with<int>>;

server::behavior_type adder() { return {
 [](int a, int b) {
 return a + b;
 }
};}

void run(server s) {
 scoped_actor self;
 self->sync_send(s, 40, 2).await(
 [](int result) {
 cout << "40 + 2 = " << result << endl;
 }
);
 self->send_exit(s, exit_reason::user_shutdown);
}

int main() {
 run(spawn_typed(adder));
 await_all_actors_done();
 shutdown();
}

CAF: Performance Example
Use case: CPU-intense tasks & token passing in rings

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 4
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 e r l a n g
 s c a l a
 c a f

c a f s c a l a e r l a n g0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 5 0

Re
sid

en
t S

et
Siz

e [
MB

]

Actor Model Implementations

⇒CAF scales to many cores with minimal RAM usage

References
[1] M. Allman, C. Kreibich, V. Paxson, R. Sommer, and N. Weaver, “Principles

for developing comprehensive network visibility,” in Proc. of Workshop on Hot
Topics in Security (HotSec), Jul. 2008.

[2] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch, “Native Actors –
A Scalable Software Platform for Distributed, Heterogeneous Environments,”
in Proc. 4rd ACM SIGPLAN Conf. on Systems, Programming, and Applications
(SPLASH ’13), WS AGERE! ACM, Oct. 2013.

VAST
https://github.com/mavam/vast

CAF
http://actor-framework.org

https://github.com/mavam/vast
http://actor-framework.org

