VAST: Visibility Across Space and Time
Architecture & Usage

Matthias Vallentin
matthias@bro.org

University of California, Berkeley

LBNL
July 22, 2014

http://matthias.vallentin.net
mailto:matthias@bro.org

MANUAL

DOE M 470.4-1

Approved: 8-26-05
Review: 8-26-07
Chg 2:10-20-10

SAFEGUARDS AND SECURITY
PROGRAM PLANNING AND
MANAGEMENT

U.S. DEPARTMENT OF ENERGY

Office of Security and Safety Performance Assurance

Vertical line denotes change.

AVAILABLE ONLINE AT: INITIATED BY:
http://www.directives.doe.gov Office of Security and Safety
Performance Assurance

2/ 26

DOE M 470.4-1

8-26-05

Table 1. Reportable Categories of Incidents of Security Concern,

Impact Measurement Index 1 (IMI-1)

Part 2, Section N, Chapter [

I-3

IMI-1 Actions, inactions, or events that pose the most serious threats to national security interests and/or critical DOE assets,
create serious security situations, or could result in deaths in the workforce or general public.

DOE O 151.1B, Comprehensive Emergency Management System, dated 10-29-03, and facility emergency management plans may
require more stringent reporting times for IMI-1 type incidents than listed here. Shorter reporting times should be determined on an
individual incident basis and applied accordingly.

containing nuclear devices and/or materials, classified information, or other national
security related assets.

Report Report
within within Report
Incident Type 1 hour 8 hours | monthly
1. Confirmed or suspected loss, theft, or diversion of a nuclear device or components. X
2. Confirmed or suspected loss, theft, diversion, or unauthorized disclosure of weapon data. X
3. Confirmed or suspected loss, theft, or diversion of Category I or II quantities of special X
nuclear material (SNM).
4. A shipper-receiver difference involving a loss in the number of items which total a X
Category I or IT quantity of SNM.
5. Confirmed or suspected loss, theft, diversion, unauthorized disclosure of Top Secret X
information, Special Access Program (SAP) information, or Sensitive Compartmented
Information (SCI), regardless of the medium, method, or action resulting in the incident.
6. Confirmed or suspected intrusions, hacking, or break-ins into DOE computer systems X
containing Top Secret information, SAP information, or SCL
7. Confirmed or suspected physical intrusion attempts or attacks against DOE facilities X

3/26

MEMORAND

FROM:

SUBJECT:

The attached Office of Science (S

Department of Energy
Washington, DC 20585

August 7, 2006

UM FOR: ASSOCIATE DIRECTORS
OFFICE DIRECTORS
SITE OFFICE MANAGERS
Gl E LOS!
FFI
OFFICE OF SCIENCE

Office of Science Policy on the Protection of Personally
Identifiable Information

€) Personally Identifiable Information (PII) Bolicy is

effective i

o Incident Reporting

ly. This sup my July i4,; T idur providing

fier discovery of a real or suspected loss of Protected PII data,

Q

Computer Incident Advisory Capability (CIAC) needs to be notified (ciac@ciac.org).
Reporting of incidents involving Public PII will be in accordance with normal
incident reporting procedures.

4/ 26

Outline

1. Introduction: VAST

5/ 26

VAST: Visibility Across Space and Time

.0.0.254 53/udp
.0.0.254 80/tcp

VAST

A unified platform for network forensics

Goals

> Interactivity

» Sub-second response times
> lterative query refinement

» Scalability

» Scale with data & number of nodes

» Sustain high & continuous input rates
» Strong and rich typing

» High-level types and operations
» Type safety

6/ 26

VAST & Bro

Bro
» Generates rich-typed logs representing high-level summary of activity

— How to process these huge piles of logs?
> Fine-grained events exist at runtime only

— Make ephemeral events persistent?

VAST
» Visibility across Space
» Unified data model: same expressiveness as Bro
» Combine host-based and network-based activity
> Visibility across Time
» Historical queries: retrieve data from the past
» Live queries: get notified when new data matches query

726

VAST & Big Data Analytics
MapReduce (Hadoop)

Batch-oriented processing: full scan of data
-+ Expressive: no restriction on algorithms

- Speed & Interactivity: full scan for each query

In-memory Cluster Computing (Spark)
Load full data set into memory and then run query
+ Speed & Interactivity: fast on arbitrary queries over working set

- Thrashing when working set too large

Distributed Indexing (VAST)

Distributed building and querying of bitmap indexes
+ Fast: only access space-efficient indexes
-+ Caching of index hits enables iterative analyses

- Limited query language (e.g., no joins)

@

Outline

2. Architecture
@ Overview
@ Data Model
@ Implementation
o Query

8 /26

Outline

1. Introduction: VAST

2. Architecture
@ Overview

3. Using VAST

4. Demo

8 /26

High-Level Architecture of VAST

Import
» Unified data model

» Sources provide events

Archive
> Stores raw data as events

» Compressed chunks & segments

Index
» Secondary indexes into archive

» Horizontally partitioned

Export
> Interactive query console
» JSON/Bro output

54 53/udp
54 80/tcp

10.0.0.1 10.0.0.
10.0.0.2 10.0.0

NN

Outline

1. Introduction: VAST

2. Architecture

@ Data Model

3. Using VAST

4. Demo

9/ 26

Architecture: Archive & Index

54 53/udp
54 80/tcp

o
NN

10.0.0.1 10.0.
10.0.0.2 10.0.

10 /26

Type System

Terminology

Event

TIME | TYPE ’7 “foo”

» Type: interpretation of data

’ID

3.14 | 7 ms

» Value: instance of a type

v

Event: value + named type + meta data

> A timestamp chunk

» A unique ID i where i € [1,264 — 2] META
» Schema: collection of event types
» Chunk: serialized & compressed events Segnent
» Meta data: schema + time range
» Fixed number of events, variable size META

» Segment: sequence of chunks

» Meta data: union of chunk meta data
» Bound on size, variable number of chunks

11/ 26

Types: Interpretation of Data

| bool | | string |
| int | | regex | | LB | |
| record |

| count | | address | TYPE TYPE
| double | | subnet | | field 1 |"_| field n
| time range | port |

TYPE TYPE
| time point | | none |

\

\—
Y
compound types

Y Y
basic types recursive types

\

12 /26

Architecture: Archive & Index

54 53/udp
54 80/tcp

o
NN

10.0.0.1 10.0.
10.0.0.2 10.0.

13 /26

Index Hits: Sets of Events

Bitvector: sets of events
> Query result = set of event IDs from [1,264 — 2]
— Model as bit vector: [4,7,8] = 0000100110 - -

Bitstream: encoded append-only sequence of bits
» EWAH (no patents unlike WAH, PLWAH, COMPAX)

A
LS TSRS IS B S IS TGS IS

» Compact, space-efficient representation 201
» Bitwise operations do not require decoding bata Bitnap
_ _] [ollo][w[o]
Bitmap: maps values to bitstreams E ﬂﬂE
0

» push_back(T z): append value z of type T o> 1][o][o]]o]
. lo] [Hlle]le]le]

» lookup(T x, Op ©o): get bitstream for x under o E n o
’ Lo]le]lo][E]

14 /26

Composing Results via Bitwise Operations

Combining Predicates

» Query Q=XANYANZ
» 2 =1234 A y<42 A z € "foo”

» Bitmap index lookup yields X — By, Y — B, and Z — Bs
» Result R = By & By & B3

By By Bs R

.-

AT

15/ 26

Outline

1. Introduction: VAST

2. Architecture

@ Implementation

3. Using VAST

4. Demo

15 /26

Actor Model

Actor: unit of sequential execution
» Message: typed tuple (Tp,..., T,) 2 T"

» Behavior: partial function over T"

v

Mailbox: FIFO with typed messages mm
» Can send messages to other actors
» Can spawn new actors

» Can monitor each actors

Benefits
» Modular, high-level components
» Robust SW design: no locks, no data races

> Network-transparent deployment

» Powerful concurrency model

16 / 26

CAF: C++ Actor Framework
libcaf

» Native implementation of the actor model
» Strongly typed actors available — protocol checked at compile-time
» Pattern matching to extract messages

» Transparently supports heterogeneous components

> Intra-machine: efficient message passing with copy-on-write semantics
» Inter-machine: TCP, UDP (soon), multicast (soon)
» Special hardware components: GPUs via OpenCL

& al

OpenCL

https://github.com/actor-framework e

https://github.com/actor-framework

Outline

1. Introduction: VAST

2. Architecture

o Query
3. Using VAST

4. Demo

17 /26

Boolean Expressions
» Conjunctions &&
» Disjunctions | |
» Negations !

» Predicates

» LHS op RHS
> (expr)

LHS: Extractors
> &type
> &time

> X.y.z.arg

> :type

Query Language

Examples
> A & B || !'(C && D)
» orig_ h == 10.0.0.1 && &time < now - 2h
> &type == "conn" || :string +] "foo"
» duration > 60s && service == "tcp"

Relational Operators
> <, <=, ==, >= >
» in, ni, [+, +]

» lin, !'ni, [-, -]

> ~ I~

RHS: Value

>

v

v

v

v

T, F

+42, 1337, 3.14

"foo"
10.0.0.0/8
80/tcp, 53/7
{1, 2, 3}

18/ 26

Query

Importer Importer Importer

Archive

m————

Client Client Client

19 /26

Query

Client 20 / 26

|||||||||||||||||||||||||||||||||||||

1. Send query string to SEARCH

CLIENT

20 / 26

Client

e X
CLIENT ; Index i
1
1. Send query string to SEARCH ! |
5 |
! 1
! 1
! 1
! 1
I Q :
! 1
! 1
! 1
i Partitions 1
| !
! 1
! 1
! 1
I Q QI
! 1
! 1
! 1
! 1
! 1
i Indexers !
! Search
! 1
! :

src == 10.0.0.1
8&
port == 53/udp

Client 20 / 26

CLIENT
1. Send query string to SEARCH

1. Parse and validate query string
2. Spawn dedicated QUERY

IS 1
1
! i
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

1
1
! |
! 1
1

1
| .

SEARCH | Partitions, !

1
| |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

1
: Search
. :
1
\ |

src == 10.0.0.1
8&
port == 53/udp

Client 20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

1. Parse and validate query string
2. Spawn dedicated QUERY

IS 1
1
| 1
| 1
| 1
! i
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1
. !
1
1
1
SEARCH | Partitions 1
1
| 1
| 1
| 1
| 1
| 1
| 1
- !
! 1
! 1
! 1
! 1
! 1
: Search
1
1
. :
\

src == 10.0.0.1
8&
port == 53/udp

Client 20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

src = 10.0.0.1
8&
port == 53/udp

Search

Client

20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

Search

Q
O

e e -

Indexers

Client

20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

Search

Partitions,

Indexers

Client

20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

Search

Partitions,

O O

Indexers

Client

20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

Search

Partitions,

O O

Indexers

Client

20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

QUERY
1. Receive hits from INDEX

O

Partitions,

O O

Indexers
Search

Client 20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

QUERY
1. Receive hits from INDEX
2. Ask ARCHIVE for segments

£

Partitions,

O O

Indexers
Search

Client 20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

QUERY
1. Receive hits from INDEX
2. Ask ARCHIVE for segments

3. Extract events, check candidates

Search

Partitions,

Client

20 / 26

CLIENT
1. Send query string to SEARCH
2. Receive QUERY actor
3. Extract results from QUERY

SEARCH
1. Parse and validate query string
2. Spawn dedicated QUERY
3. Forward query to INDEX

QUERY
1. Receive hits from INDEX
2. Ask ARCHIVE for segments
3. Extract events, check candidates
4

. Send results to CLIENT

Partitions,

Search

20 / 26

Client

Outline

3. Using VAST

20 / 26

Getting Up and Running

Requirements

» C++14 compiler

» Clang 3.4 (easiest bootstrapped with Robin's install-clang)
» GCC 4.9 (not yet fully supported)

» CMake
» Boost Libraries (headers only)

» C++ Actor Framework (unstable branch currently)

Installation
> git clone git@github.com:mavam/vast.git && cd vast
> ./configure && make && make test && make install
» vast -h # brief help

» vast -z # complete options

21/ 26

https://github.com/rsmmr/install-clang
https://github.com/mavam/vast

Deployment

Network Transparency
» Actors can live in the same address space
— Efficiently pass messages as pointer
» Actors can live on different machines
— Transparent serialization of messages

One-Shot Import Import with 2 Processes

Importer

Importer

Receiver
Receiver

Archive Index

Archive Index

Search

Importing Logs

One-Shot Import
» vast -C -I -r conn.log
» zcat *.log.gz | vast -C -I

» vast -C -I -p partition-2014-01 < conn.log

Import with 2 Processes
» vast -C # core

» vast -I < conn.log # importer

23 / 26

Synopsis: One-Shot Queries

JSON Query
> vast -C # core
» vast -E -o json -1 5 -q ':addr in 10.0.0.0/8'

Bro Query

» vast -C # core
» vast -E -o bro -1 5 -q ':addr in 10.0.0.0/8'

24 / 26

Outline

4. Demo

24 / 26

Thank You. .. Questions?

V77 _ V7 /- __/
L1/ 7 __ 1NN/ /
___/_/ _/___/ /_/

https://github.com/mavam/vast

IRC at Freenode: #vast

26 / 26

https://github.com/mavam/vast

	Introduction: VAST
	Architecture
	Overview
	Data Model
	Implementation
	Query

	Using VAST
	Demo

