
On the Evolution of Buffer Overflows

Matthias Vallentin

vallentin@icsi.berkeley.edu

May 20, 2007

The vast majority of software vulnerabilities still originates from buffer
overflows. Many different variations of buffer overflows evolved over time,
rendering them an ubiquitous threat in every piece of code. In this paper,
we present various facets of buffer overflows and pinpoint their practical
relevance. Despite numerous protection mechanisms it remains difficult to
protect against buffer overflows in their entirety.

This paper gives an overview of the existing buffer overflow techniques,
emphasizing the attacker’s perspective. We finish with a discussion of the
most well-known mitigation techniques.

Contents

1 Introduction 2

2 Basics 2

2.1 Process Memory Organization . 3
2.2 Function Calls . 4
2.3 Buffer Overflows and Exploits . 6

3 Types of Buffer Overflows 8

3.1 Activation Record Hijacking . 8
3.1.1 Stack Smashing . 8
3.1.2 Off-by-Ones and Frame-Pointer Overwrites 9
3.1.3 Arc Injection . 10

3.2 Pointer Subterfuge . 13
3.2.1 Heap Overflows . 15

4 Countermeasures 18

4.1 Eliminating Flaws . 18
4.2 Limiting Damage . 19

5 Conclusion 21

1

1 Introduction

Software vulnerabilities can emerge from a wide range of possibilities. According to the
CERT Coordination Center [Cer], the most prevalent origin remains buffer overflows. A
buffer overflow occurs when a program attempts to store data in a buffer and the data is
larger than the size of the buffer [Szo05]. Writing beyond the buffer boundaries results
in an undesired modification of adjacent memory locations. This data corruption can
be exploited by an attacker to change the control flow of the program.

The vast majority of malicious software (malware) leverages buffer overflows to execute
subsequent attacks. After an initial infection, a malicious program may download addi-
tional code pieces to enhance its attack arsenal or update existing code [HM04, Szo05]. A
recent example are botnets, a network composed of infected zombie hosts. Each instance
can enhance its functionality by fetching additional attack modules [BY06].

Given that buffer overflows lay the foundation stone for any further exploitation, it is
imperative to understand their nature and how to mitigate their impact.

Besides buffer overflows, several other types of vulnerabilities play an important role.
For example, format string vulnerabilities form a separate class of software flaws. Due
to misuse of functions for formatted output, such as the ANSI C function printf(), it
is possible to modify the control flow of the program and point it to previously injected
code [Scu01]. If an application is critically dependent on the temporal sequence of events,
it might be susceptible to race conditions. Particularly filesystem races pose a serious
threat for applications running in privileged context [BJSW05]. Handling integers proves
difficult as well: when integers are used as memory offsets or involved in perform pointer
arithmetic, their corruption can lead to control flow manipulation [Ble02]. There are
many more classes of software vulnerabilities but an in-depth discussion of these goes
beyond the scope of this paper.

Because sophistication and diversity of buffer overflows continuously advances, we
focus on fundamental approaches, rather than on cutting-edge exploitation techniques.
Note that the presented techniques are not at all exhaustive, they only comprise a well-
explored subset.

The remainder is organized as follows. We provide fundamentals and basic knowledge
in §2. Section §3 discusses the evolution of buffer overflows and introduces the different
concepts and exploitation techniques of each vulnerability. Having disputed different
ways of attacking, we turn in §4 to countermeasures and protection mechanisms. We
finish with a summary and conclusion in §5.

2 Basics

Before we discuss various buffer overflows and their exploitation techniques, we need to
familiarize with some general concepts. It is difficult to understand the nature of buffer
overflows without the understanding of function calls and operating system basics. In
this section, we touch the very fundamental concepts required to understand the remain-
der. Therefore, we introduce the memory organization of processes in §2.1, recapitulate

2

Figure 1 Process layout in memory.

Stack

Heap

BSS

Data

Text

dynamic

growth

0xc0000000

0x08048000

high address

low address

function calls in §2.2, and become acquainted with related terminology in §2.3.

2.1 Process Memory Organization

In order to understand the different types of buffer overflows, it is imperative to un-
derstand how the operating system handles processes in memory. There exist many
formats for binary files. While Microsoft platforms use the Portable Executable (PE)
format for binary files, all major UNIX flavors use the Executable and Linking Format
(ELF) [Lev99]. If a program is launched, the binary code is loaded into memory and
then executed. Such an executing program including the current values of the program
counter, registers, and variables, is called a process [TW06]. Modern operating systems
provide a separate virtual address space for each process. The Memory Management
Unit (MMU) maps virtual address to physical addresses when necessary.

An executing process is partitioned into several segments, as shown in Figure 1. We
briefly sketch the most important segments below.

Text segment. The text segment contains the binary instructions that are executed by
the CPU. To prevent an uncontrolled modification of the instructions, this segment
is read-only. An attempt to write to this segment would result in a segmentation
fault.

Data segment. Global initialized and static data resides in the data segment. For exam-
ple, the static global assignment static int foo = 0 resides in the data segment,
whereas static int bar lays in the BSS segment (see below).

BSS segment. Global uninitialized variables are stored in the Block Started by Symbol
(BSS) segment. The operating system generally assigns such variables a value of
0 before handing control over to the process. This ensures that variables do not
contain unexpected values. Although variables have a value after the assignment,
they are still treated as uninitialized.

3

Heap. A program may resort to dynamic memory during runtime. This type of data
is located on the heap. As an example, dynamic memory management in C is
performed with the functions malloc() and free().

Stack. Apart from global variables, a program contains features local variables inside
functions. The default storage class of local variables is automatic (dynamic),
i.e. they cease to exist after the function returns. On the other hand, static
local variables reside in the data or BSS segment. The stack is the place where
dynamic local variables are put together with function parameters and process
control information.

It is important to note the stack starts at high addresses, and grows dynamically
towards the heap (which in turn grows in the opposite direction). As we will see later,
buffer overflows can occur in every writable segment.

2.2 Function Calls

High-level languages like C feature independent code sections, so called functions (or
procedures) to enable structured programming. A function performs a particular task
and returns thereafter to its original position. The information required by a single
function execution is stored in an contiguous block of data called activation record or
frame [ASU86]. Languages like Pascal and C push the activation record on the stack
when entering a function, and pop the activation record off the stack when returning
control to the caller.

An activation record includes the entire function context: function parameters, saved
machine status, and local data. With respect to buffer overflows, the saved machine
status is particularly sensitive since it contains information which have an impact on the
program’s control flow. Attackers commonly seek to manipulate these to gain control of
the program.

Throughout this paper, we exclusively discuss the IA-32/x86 architecture because
it is the most widespread and well-explored platform. The activation record on this
architecture begins with the return instruction pointer (RIP) and the saved frame pointer
(SFP)1. The RIP is the address of the next instruction in the code segment after the
function returns. On the x86 architecture, the instruction pointer resides in the register
%eip (extended instruction pointer). The SFP represents the address of the beginning
of the previous stack frame, stored in the %ebp register (extended base pointer).

We now walk through an exemplary function call, as listed in Figure 2. The C source
code is shown in Figure 2(a) and the corresponding assembler code shown in Figure 2(b).
Let us follow the execution at the beginning of main(). Every function begins with a
prologue which pushes the current frame pointer and sets the new frame pointer to the
current stack pointer (located in the %esp register on the x86 architecture). This step,
shown in Figure 3(a), saves the current stack environment. OFP denotes the old frame

1Unlike Aho et al. [ASU86], we chose to begin the activation record with the RIP and SFP because
this view is more similar to the actual stack layout.

4

Figure 2 A simple function call example.

void foo(int a, int b, int c)

{

int bar[2];

char qux[3];

bar[0] = ’A’;

qux[0] = 0x2a;

}

int main(void)

{

int i = 1;

foo(1, 2, 3);

return 0;

}

(a) C source.

main: foo:

pushl %ebp pushl %ebp

movl %esp,%ebp movl %esp,%ebp

subl $4,%esp subl $12,%esp

movl $1,-4(%ebp) movl $65,-8(%ebp)

pushl $3 movb $66,-12(%ebp)

pushl $2 leave

pushl $1 ret

call foo

addl $12,%esp

xorl %eax,%eax

leave

ret

(b) Assembler source.

pointer from the previous stack frame, which is equal to the value of the SFP. The
prologue further extends to the memory reservation for local variables (subl $4,%esp,
because the local variable i is a 4-byte integer). After assigning 1 to i, the parameters
for the function foo() are pushed on stack in reverse order. Function parameters are
always referenced with relative offsets to the frame pointer2. Right before branching
into foo() the RIP is pushed on the stack (Figure 3(b)).

The function foo() begins with the prologue as well (Figure 3(c)). Note that the
stack operates on 32 bit dwords and thus rounds up the required space for local vari-
ables. Hence, 12 bytes instead of 11 are allocated. Having assigned the values to the
local variables (Figure 3(d)), the epilogue of the function, comprising the instructions
leave and ret, is executed. The leave instruction realigns the stack pointer to the
frame pointer, thereby restoring the old stack frame. Afterwards, the stack looks like in
Figure 3(e). The ret instruction is equivalent to popl %eip, popping off the RIP into
the program counter and continuing in the previous stack frame (Figure 3(f)).

Being back in the context of main(), it is time to clean up the stack. Since the
function parameters are pushed by the caller, they have to removed by the caller as well.
Therefore, 12 bytes are added to the value of %esp (three 4-byte parameter). Finally,
the program writes the return value 0 into the general-purpose register %eax and follows
the same leaving scheme as discussed in function foo().

Understanding function calls is fundamental when dealing with buffer overflows. In
§3.1, we discuss exploitation techniques which make extensive use of activation record
manipulation.

2However, compiler optimizations such as -fomit-frame-pointer calculate absolute address values for
performance issues, rendering the frame pointer in most cases superfluous.

5

Figure 3 Stack layout for Figure 2.

sfp

ofp

ebp

esp

(a) main() prologue.

sfp

1

3

2

1

rip

ofp

ebp

esp

(b) Calling foo().

sfp

1

3

2

1

rip

sfp

ofp

ofp (m)

esp + ebp

(c) foo() prologue.

sfp

1

3

2

1���
sfp

ofp

ofp (m)

�������� �� �� �	�

(d) .

sfp

1

3

2

1��
sfp

ofp���
����� �� �� ���� leave:

 movl %ebp,%esp

 popl %ebp

(e) .

sfp

1

3

2

1���
sfp

ofp�������� �� �� 41

42

ret:

 popl %eip

(f) .

2.3 Buffer Overflows and Exploits

Since many years, buffer overflows (or buffer overruns) are the most frequent exploited
software vulnerability. When a program attempts to write data into a buffer that is
larger than the buffer size, a buffer overflow occurs. Runtime environments such as
Pascal, Ada, Java, and C# can detect buffer overflows and generate exceptions. But
runtime environments geared towards performance, like C and C++, do not perform such
checking. Because most system software is written these languages, numerous critical
applications are error-prone and susceptible to buffer overflows.

Writing beyond the buffer boundaries alters adjacent data and can lead to undesired
effects. If the next memory area contains important control information, such as the
return address or a function pointer, an attacker can use the buffer overflow to alter these.

6

Figure 4 Exploit Anatomy.��
sfp

payload

buf

injection vector

(a) Classical Exploit.

!"#
sfp

payload

buf

injection vector

NOPs (0x90)

(b) NOP Sliding.

Dependent on the supplied data, different types of attacks are possible. Overwriting the
sensitive data with junk data refers to as a Denial-of-Service (DoS) attack, rendering
the program unusable, or worse, causing the program to terminate. Equally dangerous is
to overwrite the sensitive data systematically to change the control flow of the program.
Attackers use this method to divert the execution path to their own malicious code. If
the injected code contains instructions that spawn a shell, it is referred to as shellcode.

A piece of code that makes use of an existing vulnerability is termed an exploit. If
exploit code is published the same day the vulnerability is disclosed, we speak of 0-
day (“zero day”) exploits. To defend against such attacks is extremely difficult because
vendors usually do not provide patches betimes.

Classical exploits typically consist of two parts: the injection vector (IV) and the
payload, as shown in Figure 4(a). The injection vector diverts the control flow to the
payload which contains the malicious instructions. The attacker’s goal is to execute the
payload, whereas the IV paves only the way for it. One can think of the IV as “a cruise
missile for the warhead (payload)” [Kle04]. Hoglund and McGraw describe the IV as

(1) a structural anomaly or weakness that allows code to be transferred from
one domain to another, (2) a data structure or medium that contains and
transfers code from on domain to another” [HM04].

This modularization enables flexible exploit creation: once the desired payload is
crafted, it can be combined with different IVs. In other words, the set of all IVs describes
the existing exploitation techniques.

A common enhancement to increase the probability of a successful exploitation is
NOP sliding, depicted by Figure 4(b). In most cases, the absolute address of the buffer
is not known3. It is thus difficult to jump to the very beginning of the payload. But to

3Stack addresses are in general difficult to guess, e.g. due to varying environment variables or address

7

successfully execute the injected code, one has to start with its first byte. Therefore, a
series of NOP instructions is prepended to the payload, only incrementing the instruction
pointer withouth affecting anything else. If the control flow is now diverted anywhere
into the NOP field, the processor “slides” down to the beginning of the payload.

It is further possible to design multiple platform NOP slides that support different
processor architectures [HM04]. For example, an x86 and MIPS compatible NOP slide
includes the code bytes 24 0F 90 90, because the MIPS features 32-bit instructions.
This sequence translates to 0x9090 on a MIPS, but to an innocuous add on an Intel
architecture.

The interested reader may consoult the literature for many more sophisticated tech-
niques to effectively reach the payload of an exploit [HM04, Kle04, Szo05].

3 Types of Buffer Overflows

This section provides an overview of several exploitation techniques that evolved over
time. In literature, the described techniques are sometimes categorized into genera-
tions of buffer overflows [Kle04, Fla02, Szo05], because the discovery of the first lead to
the discovery of the next. Other authors prefer to categorize the techniques based on
data structures and their associated algorithms [LC03, CWP+00]. We adopt the latter
categorization.

The exploitation of buffer overflows is often bound to a specific execution environment.
We thus have to delve into particularities of a selected architecture. Note that other
architectures might exhibit equal weaknesses that can be exploited in a similar manner.

In the following, we discuss two general types of buffer overflows, activation record
hijacking in §3.1 and pointer subterfuge attacks in §3.2.

3.1 Activation Record Hijacking

The first type of buffer overflows tamper with the activation record [ASU86] on the
stack. Each time a function is called, management information are pushed on the stack,
such as RIP and SFP (see §2.2). There exist various techniques based on activation
record manipulation, yet they all originate from the well-known “stack smashing” attack.
Although buffer overflows are not a stack problem per se, the stack provides easy access
to the instruction pointer via the RIP.

We first present “stack smashing” in §3.1.1, followed by more advanced frame pointer
overwrites in §3.1.2. Thereafter, we look at arc injection attacks in §3.1.3.

3.1.1 Stack Smashing

The first generation of buffer overflows, named “stack smashing”, was introduced in
1996 by Aleph One [One96]. As the name suggests, the vulnerability involves tampering
with the stack environment of the process. Recall that the RIP is saved on the stack

space randomization (see §4.2).

8

Figure 5 A stack-based buffer overflow.

void foo(char *args)

{

char buf[256];

strcpy(buf, args);

}

int main(int argc, char *argv[])

{

if (argc > 1)

foo(argv[1]);

return 0;

}

(a) Vulnerable code.

$%&
sfp ebp

2
5
6

b
y
t
e
s

main()

foo()

&buf

shellcode

(b) Exploiting the vulnerability.

before branching into a function (see §2.2). If a local fixed-size buffer (e.g. an array)
is used in an unsafe manner, overflowing the buffer allows an attacker to overwrite the
RIP with an arbitrary value. When the function returns, the modified RIP is loaded in
the instruction pointer register, resulting in a change of the control flow. Clearly, the
goal of the attacker is to divert the control flow to a custom location, e.g. to execute
previously inserted instructions.

The following example, depicted by Figure 5, illustrates this vulnerability. In the code
shown in Figure 5(a), the function foo copies a passed string into a local buffer buf,
using the unsafe strcpy() function which continues to copy characters until it reads
a \0. Given that the function foo() is invoked with arbitrarily arguments from the
command line, an attacker can overflow the the buffer buf and thus modify the adjacent
memory space.

In this example, the local buffer is declared at the beginning of the function. Con-
sequently, the memory directly after the buffer holds the SFP and the RIP (see §2.2)
which can now be modified by the attacker. Figure 5(b) shows a possible exploit scenario
where the RIP is overwritten with the address of buf. When the function returns, the
corrupted RIP is popped into the instruction pointer register and the attacker-supplied
shellcode is executed4.

3.1.2 Off-by-Ones and Frame-Pointer Overwrites

The second generation of buffer overflows is known as off-by-ones and frame-pointer
overwrites. An off-by-one error occurs when starting at 0 instead of at 1, or by comparing
<= n instead of < n (or vice versa). More specifically, an off-by-one overflow specifies
a one-byte buffer overflow. Such an error is made exceedingly often in loop conditions:

4For the sake of simplicity, we chose a naive exploitation technique where the RIP is overwritten with
the address of the buffer.

9

void bar(char *data)

{

char buf[256];

int i;

for (i = 0; i <= 256; i++)

buf[i] = data[i];

}

This inaccurate loop provides access to the element buf[256] which is already beyond
the buffer boundary, leaving one byte at the mercy of the attacker. Such a special type
of an off-by-one overflow is termed a frame pointer overwrite because it is possible to
modify one byte of the SFP5.

In the following, we detail how an attacker can leverage this vulnerability to modify
the program’s control flow and execute own code [klo99]. The fundamental difference to
“stack smashing” is that the RIP remains untouched. Instead, the SFP is manipulated
in such a way that it entails a corruption of the higher stack frame, which in turn can
be exploited to divert the control flow of the program.

We start with a stack snapshot of the overflowed buffer in function bar() from the
above code example. Figure 6(a) displays the exploit buffer and the overflowed LSB of
the SFP whose address points to the cell 8 bytes below the SFP. The next instruction
is leave in function bar(), which is equivalent to mov %ebp %esp (Figure 6(b)) and
popl %ebp (Figure 6(c)). When returning to main, the RIP remains untouched, but the
stack frame has been corrupted. Instead of pointing to the old frame pointer, %ebp points
now to the previously altered SFP. The same cycle repeats when leaving main(). At
first, %esp is realigned to %ebp, as shown in Figure 6(d). Both %ebp and %esp now point
to the last 4 bytes of the shellcode. From the processor’s perspective, the data at this
location contains invalid instructions: %ebp points to an invalid address (Figure 6(e)).
However, at this stage of exploitation, an invalid frame pointer does not matter any
more. The next instruction, ret, loads the payload address into %eip, resulting in the
desired change of the control flow. From now on, the program is doomed to execute the
injected instructions, beginning with a NOP slide and finishing with the shellcode.

3.1.3 Arc Injection

Arc Injection [PB04, Sea05] is a more general term for return-into-libc [Des97, Ner01]
exploitation techniques. Instead of inserting executable instructions into a vulnerable
buffer, it is also possible to supply data that lead to the desired effect when the pro-
gram operates on it. The term “arc injection” refers to the exploitation approach. In
contrast to injecting executable instructions, arc injection techniques only insert a new
arc (control flow transfer) into the control flow graph, as opposed to inserting also a new
node.

5To be more precise, on architectures with little-endian byte order, such as x86, the least significant
byte (LSB) of the frame pointer is being overwritten.

10

Figure 6 The frame pointer overwrite.

'()
sfp

b
u
f

main()

bar()

payload addr

shellcode

NOPs

ofp

3C
-8

ebp

esp

(a) Overwriting the SFP.

rip

sfp

b
u
f

main()

bar()

payload addr

shellcode

NOPs

ofp

3C ebp

esp

*
(b) Aligning %esp.

rip

sfp

b
u
f

main()

bar()

payload addr

shellcode

NOPs

ofp

3C ebp

esp

(c) Restoring the SFP.

rip

sfp

b
u
f

main()

bar()

payload addr

shellcode

NOPs

ofp

3C ebp

esp

+
(d) Aligning %esp.

rip

sfp

b
u
f

main()

bar()

payload addr

shellcode

NOPs

ofp

3C ebp

esp

(e) Ready for popl %eip.

rip

sfp

b
u
f

main()

bar()

payload addr

shellcode

NOPs

ofp

3C

ebp

esp

eip

(f) Sliding to hell.

A common example involves manipulating a string representing a command line. If
this string is used by the program to spawn another process, it is possible to execute
arbitrary code on the system under attack. To this end, the RIP is also altered, but the
control flow is diverted to a C library function rather than to shellcode. This type of
attack is visualized in Figure 7.

First, the RIP is overwritten with the address of system(). Moreover, the address of
its argument "/bin/sh" is part of the attack code (Figure 7(b)). Clearly, the absolute
addresses of system() and the string "/bin/sh" need to be known in advance. Since
the C library is in most cases linked dynamically, gathering the address of system()

involves finding out the position where the C library is mapped in address space6. On
the other hand, supplying the string "/bin/sh" is straight-forward: it merely involves
creating an environment variable and referencing its address. After having overflowed the
vulnerable buffer, system() takes the attacker-provided string as argument and spawns
a shell. Note that the system() function requires a return address to jump to after it

6To this end, one can employ debuggers or have a look at the /proc directory. However, mapping shared
libraries at random addresses defeats this method [PaX].

11

Figure 7 Arc injection example.

rip

sfp

buffer

esp

(a) Regular stack.

&system

padding

dummy

&"/bin/sh"

esp

(b) Overflowed buffer.

&system

padding

return addr

&"/bin/sh"

esp

(c) After returning into
system().

&setuid

padding

&system

&'0'

esp

&"/bin/sh/"

(d) Function chaining.

&strcpy

padding

&data_seg

&data_seg

esp

&shellcode

(e) Shellcode in a
writable segment.

has finished its job. But since the program will never reach that point, we can safely
chose an arbitrary dummy value (Figure 7(c)).

A more sophisticated use of arc injection includes chaining the invocation of multiple
functions. Rather than just providing a dummy value, supplying a valid return address
for the C library function allows calling functions in a row. For example, overwriting the
RIP with the address of setuid(), immediately followed by the address of system()

allows an attacker to first escalate his privileges via setuid() and then spawn a shell
via system() (shown in Figure 7(d)).

Further, an attacker can leverage function chaining in order to place shellcode in the
data segment and transfer control to it [Woj98]. Figure 7(e) illustrates this example.
Here, the RIP is overwritten with the address of strcpy(), together with the address
of the shellcode in the data segment.

However, function chaining is limited due to the complexity in placing their return
addresses and function parameters. Consider our example in Figure 7(d) where system()
crashes when it returns, because its return address serves as a parameter for setuid().
Nonetheless, there exist methods like stack pointer lifting and frame faking [Ner01] to
circumvent this limitation.

12

Arc injection exploits prove especially useful in environments with non-executable
stack environments (see §4.2). Since no attacker-provided code is executed, these pro-
tection mechanism fall short in detecting such attacks.

3.2 Pointer Subterfuge

The deliberate modification of the value of a pointer is referred to as pointer sub-
terfuge [PB04]. As these types of attacks modify directly the control flow of the program,
they are also known as control flow attacks. Originally, pointer subterfuge attacks were
developed to evade stack protection mechanisms. Nowadays, they evolved to an equally
dangerous class of attacks showing up in manifold variations. We now sketch some
well-known types of pointer subterfuge.

Function-pointer clobbering. Overwriting function pointers allows an attacker to jump to
its own code, as shown in Figure 8(a). In function foo, a function pointer (*f)

is declared directly after the fixed-size buffer buf. Since memcpy does not perform
any boundary checking, it is possible to write beyond buf’s boundary. An attacker
could overwrite f with the address of buf, resulting in a control transfer to buf on
the next call of f.

Another example is the Structured Exception Handling (SEH) mechanism from
Microsoft. A raised exception entails the invocation of a corresponding handler,
whose function pointers are stored in a linked list of handlers on the stack. Hence
a buffer overflow on the stack allows to take advantage of this vulnerability.

Although the above example utilizes a stack-based buffer overflow, it can also oc-
cur in other writable segments, such as BSS or heap. Function pointer clobbering
is thus a very useful technique when the program employs stack protection mech-
anisms (see §4.2).

Data-pointer modification. A more generic concept is data-pointer modification [PB04].
If an attacker controls an assignment in which the destination is an lvalue, he can
perform an arbitrary memory write. Figure 8(b) depicts such a scenario, where
both the value val and the corresponding target ptr of a later assignment is
declared directly after the buffer buf. By overflowing the buffer, the attacker
controls the lvalue and rvalue of the assignment, giving him the opportunity to
perform an arbitrary 4-byte memory write7. Many protection mechanisms can be
effectively circumvented with this powerful technique.

Data-pointer modification combines very well with function-pointer clobbering [PB04].
As illustrated in Figure 8(b), the external function-pointer (*f)() is not a local
variable. Therefore, it cannot be altered in the context of the buffer overflow.
Assuming the attacker knows the address of f, he can leverage the data-pointer
modification to change the value of f, yielding the same result as a function-pointer
overwrite.

7The memory layout and data types may vary on different architectures.

13

Figure 8 Pointer subterfuge attacks.

void foo(void *arg, size_t len)

{

char buf[256];

void (*f)() = ...;

memcpy(buf, arg, len);

f();

return;

}

(a) Function-pointer clobbering.

void bar(void *arg, size_t len)

{

char buf[256];

long val = ...;

long *ptr = ...;

extern void (*f)();

memcpy(buf, arg, len);

*ptr = val;

f();

return;

}

(b) Arbitrary memory write.

VPTR smashing. C++ features virtual functions to enable dynamic function dispatching.
The majority of C++ compilers uses a virtual function table (VTBL) associated
with each class to implement virtual functions. Every instantiated object has a
virtual pointer (VPTR) to its corresponding VTBL. If an attacker overwrites an
object’s VPTR with a pointer to a forged VTBL, the next virtual function call
leads to a control flow transfer [Rix00].

For example, the forged VTBL can include pointers to previously injected shell-
code. If the VTBL has n entries, the attacker would overwrites each entry with
the same address to maximize the chance of successful exploitation. A call to a
virtual function translates to *(VPTR + x) whereas x represents the number of
the corresponding VTBL entry.

Although VPTR smashing has not yet been used often in the wild, it qualifies as
an effective option to escape heap protection mechanisms [PB04].

As outlined above, all pointer subterfuge attacks prove very useful to complement other
attacks. A skilled attacker might use several indirections and combine various techniques
to circumvent memory protection mechanisms. Therefore, a thorough understanding of
the attacker’s arsenal is required to devise effective mitigation strategies.

Pointer subterfuge attacks can also occur in the BSS segment. Klein [Kle04] terms BSS
overflows as the third generation exploits. However, the main-stream literature deems
heap overflows (see below) as third generation. We thus touch the topic only briefly.
Recall that uninitialized global and static data lays in the BSS segment (see §2.1). Unlike
the stack, the BSS segment grows towards increasing addresses. With respect to buffer
overflows, this implies that data after the vulnerable buffer can be manipulated. Conover
presents an example where a file pointer is declared after a vulnerable buffer [Con99].
The pointer is then used to write to a temporary file. In a concrete exploitation scenario,
an attacker can overwrite the pointer value and let it point to /etc/passwd in order to
add a new privileged user to the system.

14

3.2.1 Heap Overflows

In the following, we present heap overflows and their consequences. Since the operations
that lead to the vulnerability are pointer overwrites, we chose to discuss this topic in
the context of pointer subterfuge attacks.

The heap is a coherent memory area available for allocation and deallocation of
arbitrary-sized blocks (see §2.1). Like the stack, the heap has to manage internal status
information along with the actual data in the same area. Deliberately modifying this
management information using a buffer overflow refers to as a heap overflow.

As heap overflows inherently rely on the implementation of the dynamic memory al-
locator, we first introduce the internals of the malloc() implementation of C library.
Since many years, the C library employs ptmalloc as standard implementation for dy-
namic memory allocation. It partitions the heap in reserved memory blocks of arbitrary
size, called chunks. Chunks can be allocated, freed, split, and merged with other chunks.
To this end, the C library features functions such as malloc(), calloc(), realloc(),
free() and friends. Contrasting to allocated chunks, free chunks can never lay next to
each other. Instead, they are merged together into one bigger free chunk to reduce the
overall number of small unusable chunks.

In addition to the actual chunk data, meta information about the exact size and
position of the chunk has to be managed. On the one hand, this information is used
to merge empty chunks right next to each other. On the other, it is used to locate a
particular chunk when starting from an arbitrary chunk. These meta information are
called boundary tags, because they embrace a chunk with data after and in front of it.

Allocated and free chunks have different boundary tag structures, as shown in Figure 9.
First, we look at commonalities that both types share. Each boundary tag has associated
three pointers: (i) the chunk pointer, marking the beginning of a chunk including the
entire boundary tag, (ii) the mem pointer, returned to the program requesting memory
via malloc(), and (iii) the nextchunk pointer, specifying the beginning of the next
chunk.

A free chunk, depicted by Figure 9(a), uses the prev size field to indicate the size (in
bytes) of the previous chunk if it is free. Otherwise it is used by the previous chunk
to to store data, trying to use the available memory as efficiently as possible. The
size field contains the absolute size of a chunk, from chunk up to nextchunk. Further,
the least significant bit, PREV INUSE, indicates if the previous chunk is allocated or
not. The next two fields, fd and bk, are only used by free chunks8. They stand for
the forward pointer and back pointer, connecting a free chunk with the previous and
next free chunk. Since free chunks do not lay next to each other, these pointers do not
represent physical vicinity but rather a special arrangement in bins. Bins are essentially
doubly-circularly-linked lists. A schematic view of a bin with three chunks is shown in
Figure 9(c). In general, bins contain free chunks of similar size, but bins for sizes <

512 bytes contain chunks of all the same size, spaced 8 bytes apart. Larger bins are
approximately logarithmically spaced.

8An allocated chunk, as illustrated in Figure 9(b), uses the fd and bk fields for data as well.

15

Figure 9 Different chunk structures.

prev_size

size

fd

PREV_INUSE

bk

data

chunk

mem

nextchunk

4

4

4

4

>= 0

(a) Free chunk.

prev_size

size

fd

PREV_INUSE

bk

data

chunk

mem

nextchunk

data

data from previous chunk

4

4

4

4

>= 0

(b) Allocated chunk.

Chunk

Bin

Chunk

Chunk

fd

bk bk

fd

bk

fd

bk

fd

(c) A bin with containing chunks.

The exploitable vulnerability occurs when a chunk is removed from bin, e.g. to merge
it with adjacent free chunk. Removing a chunk is done with unlink() macro, which is
defined as follows:

#define unlink(P, BK, FD)

{

BK = P->bk;

FD = P->fd;

FD->bk = BK;

BK->fd = FD;

}

In this piece of code, P denotes the chunk, BK the back pointer, and FD the forward
pointer from the chunk being unlinked. The operations themselves are self-explanatory.
We note though, that FD->bk is equivalent to FD + 12 and BK->fd is the same as BK +

8 (see Figure 9). This will later play an important role when tampering with pointer
values.

We now turn to the actual vulnerability. Therefore, consider the example code in
Figure 10(a): Three memory allocations followed by a copy operation, and finally the
obtained memory is freed. Remember that the three buffers are separated by their
boundary tags; their memory layout is shown in Figure 10(b). Similar to activation

16

Figure 10 Exploiting unlink().

...

char *buf1 = malloc(0);

char *buf2 = malloc(256);

char *buf3 = malloc(0);

...

gets(buf2);

...

free(buf1);

free(buf2);

free(buf3);

...

(a) unlink() vulnerability.

prev_si

si

fd

PR,-
prev_si

si PR

si

fd,-
buf1

buf2

buf3

fd

i
n
c
r
e
a
s
i
n
g

a
d
d
r
e
s
s
e
s

data

PREV_INUSE

bk

prev_size

(b) Before gets(buf2).

prev_si

si

fd

PR./
prev_si

si PR

fd./

buf1

buf2

buf3

&free() - 12

i
n
c
r
e
a
s
i
n
g

a
d
d
r
e
s
s
e
s

shellcode

ff ff ff

buf2 + 8

42 42 42 42

\0

(c) After gets(buf2).

record hijacking, we can overwrite management information on the heap. The idea is to
manipulate the fd/bk fields of buf2 and then call unlink() on the modified chunk by
flipping the PREV INUSE bit of buf3.

When free(buf1) is called, it looks at the next chunk to see whether it is in use or
not. If the next chunk is unused, unlink() is called to merge it with the chunk being
freed. To this end, the PREV INUSE bit of the third chunk is evaluated.

Clearly, calling unlink() on a allocated chunk is not intended and causes most likely
a segmentation fault. In our example, the attacker has control over the relevant data.
As illustrated above, unlink() dereferences (fd + 12) in order to write at that address
the value bk (alleged value of the back pointer). As a result, an arbitrary 4-byte memory
write is possible.

What are potential candidates for such an overwrite? Certainly, a pointer is chosen
to modify the control flow of the program. The RIP on the stack might look attractive,

17

but it is difficult to map out. Another candidate is a function pointer in the global offset
table (GOT). The GOT is created by the linker and contains pointers to all global data
that an executable addresses [Lev99]. Disassembling the binary (e.g. with objdump)
yields the desired function address in the GOT.

Let us examine the exploit buffer in Figure 10(c). The fd field is overwritten with
&free() - 12, meaning the address of free() in the GOT minus 12. Since unlink()

adds an offset of 12 to reach the bk field of the next chunk (P->fd->bk), the offset has
to be subtracted. The right side of the assignment is the bk field, which is set to buf2

+ 8, because the shellcode is located 8 bytes away from buf2. Beyond the actual buffer
boundary, 4 dummy values 0x42 overwrite the prev size field. At last, the terminating
\0 flips the PREV INUSE bit, setting the ball rolling. With the next call of free(),
the program executes the shellcode instead of freeing the desired memory.

Upon closer examination, we have so far ignored one unlink() directive where the back
pointer is updated (BK->fd = FD). BK is clearly overwritten with buf2 + 8. Further,
adding the fd offset entails a memory write at (buf2 + 8) + 8, which is in the middle
of the shellcode. The shellcode has thus to jump over its modification in order to spawn
a shell successfully.

4 Countermeasures

To err is human. Exploitable software flaws produced by software developers will not
cease to exist. It is therefore indispensable to confront buffer overflow pro-actively.

There exist generally two approaches to counter buffer overflows [EL02]. The first
class of mitigation techniques, presented in §4.1, involves eliminating the cause of buffer
overflows. The second class, discussed in §4.2, deals with alleviating the impact of buffer
overflows by fixing the surroundings of a vulnerable program, i.e. containing the resulting
damage.

4.1 Eliminating Flaws

Techniques that detect and correct human errors before the software is deployed greatly
reduce the potential risk of exploitation. Numerous approaches exist that focus on
extincting bugs before they can be exploited. In the following, we briefly introduce some
basic aspects presented in [Kle04].

Secure Programming. Especially languages that focus on performance and flexibility rather
than security and reliability are prone to programming errors. Even worse, direct
low-level memory access and unsafe library functions potentiate numerous vul-
nerabilities. It is eventually up to the programmer to produce safe code. For
example, an educated programmer should never use unsafe library functions, such
as strcpy(), that do not perform explicit boundary checks of fixed-size buffers.

Source Code Audit. Apart from secure programming paradigms, a comprehensive source
code analysis can uncover many software flaws. Such a line-by-line audit allows

18

selective checking and fixing of known pitfalls. However, human inspection is costly,
error-prone, and time-consuming. Since many tasks can be performed, automatic
software tests complement the testing process particularly for complex processes.

Automatic Software Tests. Enhancing time-consuming human inspection with automated
software tests proves apt for more complex scenarios. The goal of automated tests
is to accommodate the knowledge of experts in tools to scrutinize software in a
faster and more cost-efficient fashion than manual inspection.

Source code analyzer fan out into static and dynamic approaches. While static
analysis tools inspect on the source of the program, dynamic tools check for run-
time errors. Further, static tools can be subdivided in lexical and semantic an-
alyzers. The former treat source code as individual tokens, where each token is
verified separately. Tools such as grep, flawfinder [Dav], and RATS [For07] belong
to this class. The latter incorporate semantic context gathered from a control flow
analysis to derive conclusions about connected activities. For example, compiler
warnings spit out semantic errors, and tools like splint [LE01] come with a rich set
of functions for contextual error analysis.

Dynamic approaches execute the program and try to find run-time errors leading
to buffer overflows. The tools for this task are referred to as tracer. They log
the control flow and analyze the audit trail. A debugger is the most prominent
example for a tracer. Many tools exist that can be employed to conduct run-time
analysis, e.g. Electric Fence [Bru], Purify [IBM], and valgrind [NS07].

Binary Audit. If the program being tested is only available as a binary, the security anal-
ysis turns out to be more difficult. Without the source code, one uses techniques
such as fault injection or reverse engineering. Fault injection deliberately perturbs
the environment to provoke obvious program flaws that suggest about internal er-
rors. To this end, the program is fed with input generated by fuzzers, that create
random data to find buffer overflows by chance.

Reverse engineering on the other hand involves examining the binary program
itself, rather than only tampering with its environment. Disassemblers such as IDA
Pro [Dat] and SoftICE [Cor99] visualize assembler instructions in an interactive
GUI. The comfortable interface allows the analyst to reconstruct a detailed picture
from the program’s internals, rendering disassembly an extremely effective yet
complex method to find software vulnerabilities.

4.2 Limiting Damage

Relying solely on flaw finder tools, human code reviews, or automatic software tests
might iron out numerous bugs, but cannot provide complete safety. For example, hitherto
unknown exploitation techniques cannot be addressed by these mechanisms. Therefore,
a complementary approach to eliminating flaws is limiting the damage of a possible
exploitation. For the following approaches, the program code itself is not the subject of
analysis, instead one tries to cut all possible attack paths to the application.

19

Wrapping unsafe library functions. To mitigate the impact when using unsafe library func-
tions, the libsafe [BST99] project pursues an approach that inserts a dynamically
loadable library catching and substituting calls to vulnerable libraries. Based on
the preload feature of dynamically loadable ELF libraries, libsafe transparently
loads its own wrapper with processes it should protect.

Many types of stack-based buffer overflows can be eliminated using libsafe. How-
ever, it is by far not possible to include all potential unsafe library functions in
this concept. Further, protecting against BSS and heap overflows fails because the
libsafe only recognizes stack-based attacks (due to relative frame pointer referenc-
ing).

Compiler Extensions. Another approach enriches the compiler with specific safety mecha-
nisms, ranging from RIP overwrite protections to comprehensive bounds checking.

StackGuard [CPM+98], for example, features a stack protection mechanism that
inserts a canary value between the SFP and RIP. On each function return, the
canary’s integrity is controlled. If the canary is manipulated, StackGuard assumes
that the RIP was modified as well and terminates the program immediately. This
mechanism only prevents RIP overwrites. We saw in §3.1.2 that the control flow
can be easily modified without involving the RIP. ProPolice [Eto03], an enhanced
StackGuard concept, extends the protection to the SFP and performs array vari-
able relocation to the highest part of the stack frame. This makes it harder to
overwrite them and corrupt other variables. Microsoft’s pendant, based on a sim-
ilar technique with a security cookie, is called /GS option [Bra02].

All stack protections have one thing in common: they only protect the stack. Un-
fortunately, the stack is just one piece in the puzzle. As previously shown, pointer
subterfuge attacks (see §3.2) can occur also in other segments. The limited scope of
these compiler extensions shows that none of the approaches provide comprehen-
sive defensive mechanism. In combination, these tools protect nonetheless against
many types of buffer overflows and should not be dismissed just because no overall
solution is provided.

Environmental Modifications. A completely different approach from the so far mentioned
techniques deals with the modification of the program’s execution environment.

One method transforms the stack into a non-executable segment. Most exploits
are based on overwriting a function’s RIP to point to some injected code which
lays also on the stack. Setting the stack non-executable makes it much harder to
exploit buffer overflows. Again, injecting code in a different segment easily evades
this protection.

The PaX [PaX] project tries to offer a more comprehensive protection. For exam-
ple, it introduces PAGE EXEC, a kernel patch that enables non-executable pages,
eliminating the possibility of executing code in pages which are supposed to hold
data only. Further, since most exploit techniques rely on the knowledge of certain

20

addresses in the attack program, PaX features Address Space Layout Randomiza-
tion (ASLR) to force an attacker to guess the addresses. Included is randomization
of the top of the task’s kernel and userland stack, base address for mmap() requests
that do not specify one, and the base address of the main executable.

Using PaX in combination with segvguard [Ope], a daemon that temporarily dis-
ables execution of certain programs to prevent bruteforcing, a very large share of
exploitation techniques can be eliminated. On the downside, performance penalties
up to 500% may result from PAGE EXEC.

5 Conclusion

Buffer overflows still account for the largest share of software vulnerabilities. Particularly
dangerous is the area of remote exploitable vulnerabilities, where attackers hijack hosts
in the Internet to perform criminal activities on behalf of others.

In this paper, we set out to give a broad overview about existing techniques that exploit
buffer overflows. Our discussion is dominated by the attacking perspective and touches
defensive approaches only marginally, because a detailed coverage would go beyond
the scope of this paper. Nonetheless, we introduce the most well-known mitigation
techniques. Further, it is important to note that the techniques can be effectively used
in tandem to perform more complicated attacks.

Over time, many exploitation techniques evolved, eluding even sophisticated protec-
tion mechanisms. Although approaches such as PaX raise the bar significantly, a com-
plete and practical solution to defeat buffer overflows is yet to be found. Meanwhile,
defending against this ubiquitous threat requires a combination of static and runtime
solutions.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986. ISBN 0-201-10088-6.

[BJSW05] Nikita Borisov, Rob Johnson, Naveen Sastry, and David Wagner. Fixing
races for fun and profit: How to abuse atime. In Fourteenth USENIX Security
Symposium (USENIX Security 2005), August 2005.

[Ble02] Blexim. Basic Integer Overflows. Phrack, 60–10, December 2002. Avaliable
from http://www.phrack.com.

[Bra02] B. Bray. Compiler security checks in depth. Technical report, Microsoft
Corporation, 2002.

[Bru] Bruce Perens. Eletric Fence. http://perens.com/FreeSoftware/

ElectricFence/.

21

[BST99] A. Baratloo, N. Singh, and T. Tsai. Libsafe: Protecting critical elements of
stacks, 1999.

[BY06] Paul Barford and Vinod Yegneswaran. An Inside Look at Botnets. In Pro-
ceedings of the Special Workshop on Malware Detection, Advances in Infor-
mation Security. Springer Verlag, 2006.

[Cer] CERT Security Advisories. http://www.cert.org/advisories/.

[Con99] Matt Conover. w00w00 on Heap Overflows, 1999. Avaliable from http:

//www.w00w00.org/articles.html.

[Cor99] Compuware Corporation. Debugging blue screens. Technical Paper, Septem-
ber 1999.

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proc. 7th USENIX Security Conference, pages 63–78. San Anto-
nio, Texas, jan 1998.

[CWP+00] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows:
Attacks and defenses for the vulnerability of the decade. In DARPA Infor-
mation Survivability Conference & Exposition – Volume 2, pages 119–129,
January 2000.

[Dat] DataRescue. IDA Pro Disassembler. http://www.datarescue.com/

idabase/.

[Dav] David A. Wheeler. FlawFinder. http://www.dwheeler.com/flawfinder/.

[Des97] Solar Designer. Getting around non-executable stack (and fix). Bugtraq mail-
ing list, http://www.securityfocus.com/archive/1/7480, August 1997.

[EL02] David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1):42–51, /2002.

[Eto03] Hiroaki Etoh. GCC extension for protecting applications from stack-
smashing attacks (ProPolice), 2003. http://www.trl.ibm.com/projects/

security/ssp/.

[Fla02] Halvar Flake. Third Generation Exploitation, 2002. Avaliable from www.

blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt.

[For07] Fortify Software. Rough Auditing Tool for Security (RATS). http://www.

fortifysoftware.com/security-resources/rats.jsp, 2007.

[HM04] Greg Hoglund and Gary McGraw. Exploiting Software: How to Break Code.
Addison Wesley, 2004. ISBN 0-201-78695-8.

22

[IBM] IBM. Rational Purify. http://www-306.ibm.com/software/awdtools/

purify/.

[Kle04] Tobias Klein. Buffer Overflows und Format-String-Schwachstellen.
dpunkt.verlag, 2004. ISBN 3-89864-192-9.

[klo99] klog. The frame pointer overwrite. Phrack, 55–8, November 1999. Avaliable
from http://www.phrack.com.

[LC03] K. Lhee and S. Chapin. Buffer overflow and format string overflow vulnera-
bilities. Software—Practice & Experience, 33:423–460, 2003.

[LE01] David Larochelle and David Evans“. Statically Detecting Likely Buffer Over-
flow Vulnerabilities. In Proceedings of the 10 th USENIX Security Sympo-
sium, pages 177–190, August 2001.

[Lev99] John R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999. ISBN 1558604960.

[Ner01] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack,
58–10, November 2001. Avaliable from http://www.phrack.com.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation
(PLDI 2007). San Diego, California, USA, June 2007.

[One96] Aleph One. Smashing the stack for fun and profit. Phrack, 49–14, November
1996. Avaliable from http://www.phrack.com.

[Ope] Openwall. segvguard. ftp://ftp.pl.openwall.com/misc/segvguard/.

[PaX] PaX. http://pax.grsecurity.net/.

[PB04] Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent ad-
vances in exploiting buffer overruns. IEEE Security and Privacy, 2(4):20–27,
2004. ISSN 1540-7993.

[Rix00] Rix. Smashing C++ VPTRs. Phrack, 56–10, 2000. Avaliable from http:

//www.phrack.com.

[Scu01] Scut. Exploiting Format String Vulnerabilities, Version 1.2, September 2001.

[Sea05] Robert C. Seacord. Secure Coding in C and C++ (SEI Series in Software
Engineering). Addison-Wesley Professional, 2005. ISBN 0321335724.

[Szo05] Peter Szor. The Art of Computer Virus Research and Defense. Addison-
Wesley, 2005. ISBN 0321304543.

23

[TW06] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems: Design
and Implementation. Prentice Hall, 2006. ISBN 0131429388.

[Woj98] Rafal Wojtczuk. Defeating solar designer non-executable stack patch. Bug-
traq mailing list, http://www.securityfocus.com/archive/1/8470, 1998.

24

