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Abstract 

Much of the Internet's end-to-end security relies on the SSL protocol along with its underlying 
certificate infrastructure. We offer an in-depth study of real-world SSL and X.509 deployment 
characteristics from an unprecedented vantage point, based on a data set of more than 1.4 
billion SSL sessions collected at the border of five operational sites. Our contributions are two-
fold: First, we revisit results from past work with a recent data set that allows us to reassess 
previous findings and identify recent trends. Second, we provide a detailed study on a range of 
further SSL/X.509 deployment properties that have not yet seen the attention they deserve, 
including the intricate web of intermediate certificate authority (CA) relationships, 
characteristics of SSL session reuse, usage of vendor-specific protocol extensions, and non-
standard CA root hierarchies. While in general we find that today's SSL deployment functions 
well, we also identify new support for the inherent weaknesses of the system. Along the way, 
we gain deep insight into specifics and oddities of SSL/X.509 usage, including a surprising 
difficulty of aligning certificate validation with what typical browsers do. 
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1. INTRODUCTION
The Secure Socket Layer (SSL) protocol provides a cen-

terpiece of the Internet’s end-to-end security, along with its

underlying X.509 certificate infrastructure. However, most

of that technology predates the modern Web, and the cur-

rent system exhibits well-known weaknesses, such as its

questionable trust bootstrapping which relies on >100 root

certificates shipping with common browsers. Past studies—

both academic and otherwise—have examined aspects of the

SSL/X.509 combo, most comprehensively by Holz et al. [17]

recently at IMC 2011. Our work continues this line of work

by consolidating past efforts with a recent, broader data set

that allows us to reassess previous findings and identify trends.

Going further, we study a range of additional SSL/X.509 de-

ployment properties that have not yet seen the attention they

deserve, including the intricate web of intermediate CAs,

vendor-specific protocol extensions, SSL session reuse, and

independent CA root hierarchies used outside of the web

context. While in general we find that today’s Public Key In-

frastructure (PKI) deployment functions rather well—a result

the more surprising the further one digs—we also identify

new support for the inherent weaknesses of the system. Along

the way, we gain deep insight into specifics and oddities of

SSL/X.509 usage, including a surprising difficulty of aligning

certificate validation with typical browsers.

Our data1 comprises approximately 1,000 hours of SSL

activity from about 115K users at five research institutions,

yielding a total set of about 1.4 billion SSL sessions, extracted

from live network traffic independent of their TCP ports. With

these sessions come about 1.8M certificates and about as

many unique certificate chains. About 8% of the certificates

validate against the Mozilla root store, while most of the

remaining ones use an alternative root hierarchy. Due to

privacy constraints we cannot release the connection-level

data, however we make all the web certificates available to

the community in the form of a public online notary service,

with an interface compatible to existing systems.

From a broader perspective, we also see our work as a

case-study on collaborating successfully with network opera-

tions. The challenge of getting access to real-world network

data is a recurring theme in our scientific community, as

researchers often find operators reluctant to provide input

for their studies. Our work provides evidence that one can

overcome such hurdles by addressing the constraints that the

operations community face.

We structure the remainder of this paper as follows: §2

summarizes related work. In §3, we discuss our analysis

methodology, including the collection process we deploy for

this study; and §4 introduces our data set. In §5, we exam-

ine the data in the context of previous efforts to understand

similarities and trends; and we then dig deeper into not yet

explored aspects in §6. §7 presents the public notary service

1Please note that this technical report shows the state of our work
as of April 2012.

we set up. Finally, §8 discusses our experiences working with

operations, before we conclude in §9.

2. RELATED WORK
The past years witnessed a noticeable increase of secu-

rity incidents involving certificate authorities, rendering the

global PKI infrastructure an attractive subject of study. The

Electronic Frontier Foundation (EFF) popularized the study

of SSL infrastructure by publishing certificate data sets ob-

tained from actively scanning the entire IPv4 address space on

port 443 in mid 2010 and, again, in early 2012 [12], yielding

5.5M [17] and 7.2M [25] distinct certificates, respectively.

Holz et al. [17] provide the most comprehensive academic

treatment of the SSL infrastructure we are aware of. In ad-

dition to incorporating the 2010 EFF data set, the authors

collect certificates by crawling the Top 1M Alexa domains

from different vantage points over a set of time periods, as

well as gather certificate and connection data by passively

monitoring the uplink of a German research network. We

revisit the findings of this research in §5. As they also provide

background on SSL and X.509, we omit repeating a similar

discussion and refer to their publication for such context.

Lenstra et al. [25] perform an analysis of 11.7M public

keys from a variety of sources, including SSL certificates,

PGP keys, and SSH host keys. The authors find that 4% of the

public keys in certificates and PGP keys share an RSA mod-

ulus, which enables recovery of the corresponding private

key. Nearly all affected public keys belong to embedded de-

vices [15], and the sharing of moduli presumably results from

poor entropy at key generation time (e.g., system startup).

Rather than studying one aspect of public keys, our work has

a broader goal: we offer a detailed study of many facets of

the SSL protocol and X.509 certificate mesh work. However,

we do indeed find that the reported key exponent distribution

exactly matches our dataset for the first top 5 entries, which

account for 99.9% of their data.

Vratonjic et al. [33] also crawl the Top 1M Alexa sites

and extract 300K certificates (including 48% duplicates), of

which only 16% validate, i.e., the browser does not show

a warning. Holz et al. [17] find this number to be 18%.

However, both studies do not cache intermediate certificates

as part of their validation strategy, which skews the results.

Mishari et al. [27] study 30K SSL certificates from ran-

domly scanning .com and .net domains, crawling the Top

10K Alexa sites, and probing well-known phishing and typo-

squatting domains. After a brief characterization of the data

set, the authors devise a classifier that separates malicious

certificates from benign, based on 9 features including the

certificate signature algorithm in use, if the subject appears

to have default names (e.g., ST=somestate), if it is self-

signed, if the subject common name is similar to the host

name, or a “normal” value of the validity period. While our

work does not assess certificates, it explores the feature space

and can thus benefit such approaches.
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Perspectives [35] offers an alternative trust model to the

existing PKI infrastructure. Today, CAs make a trust decision

on behalf of the users by signing a site’s certificate. However,

users cannot choose to anchor their trust with a different

authority for a given site: a certificate is a one-to-one mapping

between a CA and a site. Perspectives removes this “trust

lock-in” by replacing a CA with one or more notaries, which

lookup a requested certificate from a different vantage point

and thus allow users to compare the certificate presented by

the site against the ones seen by the notaries. While the

original intention was to thwart man-in-the-middle (MITM)

attacks via multiple paths to a site [29], the ability to switch

to a user-initiated trust model gained much wider traction in

the community. The basic implementation of Perspectives

suffers from completeness (only the initial SSL connection

is subject to inspection), performance (notary lag, and lack

of caching), and privacy issues (leaking browsing history),

which the follow-up Convergence [1] aims to address. We

provide a Convergence compatible backend to the community

to make our certificate data accessible.

The EFF proposes to solve the problem of malicious CA

certificates by using semi-centralized timeline servers utiliz-

ing an cryptographic append-only data structure [13]. This

data structure would make MITM attack virtually impossible

and clients could automatically use alternative paths to a site

when they detect any tampering.

Soghoian and Stamm [31] present the threat of compelled

certificate creation attacks, in which governments may force

a CA under their jurisdiction to issue malicious certificates

for MITM attacks. The authors evaluate several theoretical

scenarios in which such man in the middle attacks might be

carried out and propose to solve the problem by displaying

a warning if the CA is situated in a different country than

the entity for which the certificate was generated. Our notary

service offers an alternative framework to assess certificate

trustworthiness.

3. METHODOLOGY
We begin our discussion with an overview of our method-

ology in terms of the features we extract from SSL traf-

fic (§3.1), the collection setup now in operation at five net-

work sites (§3.2), and our strategy for validating chains (§3.3).

3.1 Features
Generally, we assume the vantage point of a site’s upstream

border link where we passively monitor live SSL/TLS 2 traffic

to extract a set of features for later offline analysis. From

a high level perspective, the data we collect splits into two

parts: (i) connection-level features of individual SSL sessions,

and (ii) the aggregate set of X.509 certificates we see across

them.

Table 1 summarizes the features we collect. Their choice

accounts for privacy concerns (see §8). In particular, we

2For the remainder of the paper, we will refer to either SSL or TLS
as “SSL”.

do not record any information that identifies a client sys-

tem directly. We however log one-way hashes of the pairs

(client, server) and (client, SNI), which allow us identify all

sessions involving the same endpoints. We also hash SSL

session IDs to avoid recording payload. Finally, we config-

ure the live analysis to inspect only outgoing connections to

protect local servers and avoid a potential site bias.

3.2 Collection and Processing
We use Bro 2.0 [28, 4] to extract the features from live traf-

fic. Bro detects and parses all SSL connections independent

of any transport-layer ports by inspecting their payload. [8]

We wrote a custom script in Bro’s configuration language

that implements extraction and logging, which we give to

operators at participating sites. The Bro script continuously

records all features to a file, which it uploads in regular inter-

vals to a central server at our research institute. The five sites

in our study are all operating ongoing Bro installations and

added our script to existing setups.3

On the central server, we import all uploaded data into

a PostreSQL database. We validate all certificate chains

at import time (see §3.3) and perform further consistency

checks similar to what browsers are doing, such as matching

the subject’s Common Name (CN) against both the SNI value

and all Subject Alternative Names. We spent significant time

to optimize our import scripts for handling large numbers of

SSL connections. At peak times, our data providers upload

more than a million new connections per hour. During bulk

imports, we measured the script’s maximum rate at about

100K connections/minute for a single thread, running on a

Intel Xeon E5630 CPU. As certificate validation accounts for

most the work, the processing parallelizes well across CPUs.

We point out that our data set exhibit artifacts of the col-

lection process that are beyond our control. As we leverage

operational setups that run our analysis on top of their normal

duties, we must accept occasional outages, packets drops

(e.g., due to CPU overload) and misconfigurations. As such,

we deliberately design our data collection as a “best effort”

process: we take what we get, however we can generally

not quantify what we miss. However, given the large total

volume across the five sites, we consider the aggregate as rep-

resentative of many properties that real-world SSL activity

exhibits.4 Furthermore, due to the passive nature in which our

data was generated, our results are specific to the networks

which allowed us to harvest their data.

3.3 Certificate Validation
When validating certificates, we aim to match the results

that a typical browser would come to. That, however, turns

out surprisingly involved as we find a large variety in what

certificates SSL servers include. In particular, many chains
3At three of the sites, members of our team did the set up after
receiving administrative approval.
4As support, we note that generally we do not find unexpected
qualitative differences between sites other than those we explicitly
point out.
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Feature Description

Available ciphers Lists of ciphers offered by client and server, respectively.
Client SSL extensions List of SSL extensions the client sent.
Hash(client, server) Hash of client and server IP addresses.
Hash(client, SNI) Hash of client IP address and SNI, if available. (see §6.7)
Hash(client session ID) Hash of the client-provided session ID. (see §6.8)
Hash(server session ID) Hash of the server-provided session ID. (see §6.8)
Selected cipher Cipher negotiated between client and server.
Server certificates Complete server-side certificate chain (see §3.3).
Server Name Indication Value of the SNI extension header, if available (see §6.7).
Ticket lifetime hint Suggested lifetime of session’s reuse ticket, if available. (see §6.8)
Timestamp Time of the connection’s first packet.
Version SSL protocol version.

Table 1: Features we collect in real-time for each SSL connection at our data collection sites.

remain incomplete, which tools like OpenSSL cannot handle

directly. As we have not found this process documented

elsewhere, we report the specifics of our approach in the

following. Here, and for the remainder of our discussion, we

use the Mozilla root store as our trusted base.

When validating a certificate C from a server chain CHS ,

we incrementally assemble a temporary validation chain

CHV that leads from C to one of the roots. Once we have

such a sequence complete, we use OpenSSL to verify its

correctness.5 If successful, we mark all certificates in CHV

as validated. We then likewise consider CHS as validated.

We first attempt to build CHV exclusively from certificates

contained in CHS . First, we match C’s Issuer against the

Subject of all root certificates. If we find a match, this com-

pletes CHV . Otherwise, we examine CHS for a matching

intermediate certificate. If found, we insert that into CHV

and proceed recursively. If not, we search for a matching

intermediate across all already validated CA certificates in

our data set that have not yet expired. This step matches the

behavior of typical browsers, which cache intermediate CAs

they have already encountered in past sessions in their local

certificate store.6 Of all valid certificate chains in our data set,

7.37% are incomplete and hence require this step. If we have

come to a complete chain CHV , yet find that OpenSSL does

not accept it, we attempt to extend it further. This addresses

a specific case where the name of an intermediate certificate

matches that of a root, even though their keys differ.

We observe that certificate chains frequently contain more
certificates than necessary for their validation. 19.70% in-

clude a certificate that is already part of the Mozilla root store.

Excluding those as well as cross-signing and intermediate

certificates unnecessary for validation, we see further extra

certificates in 2.84% of the chains, including ones that are

expired, self-signed, or duplicated. On the website of a se-

5We use an a EFF-developed OpenSSL patch that allows to vali-
date a certificate retrospectively at the time of the corresponding
connection.
6This behavior makes validation dependent on a browser’s state
for incomplete chains. Indeed, we noticed that the web server of a
major research institution failed to include a necessary intermediate
certificate and thus remained inaccessible with a fresh browser
installation.

curity researcher, we encounter an extra, unused certificate

with a 28-bit(!) key at the top of the chain. Browsers ignore

such additional certificates as they stop after the first valid

end host. Indeed, we find ourselves unable to display that

extra certificate with any of the standard browsers.

The presented approach seems to generally match well

with what a browser returns. While an exact comparision

is technically difficult7, we manually checked that among

the certificates our method leaves unvalidated, there are no

frequent cases that a standard browser would accept.

4. DATA SETS
We now describe our data set in more detail. Five opera-

tional network sites of different sizes provide us with SSL

data for our study, captured at their upstream network links.

Table 2 summarizes the data from each site. Our contribu-

tors requested to remain anonymous. They are all research

environments, with four of the five located in the U.S. . As

we added the sites incrementally to our study, the individual

sets span different time periods. For comparision, we list

the total hours observed at each site (non-continuous due to

occasional outages).

As Table 2 shows, our data set includes a total of 1.9M

unique X.509 certificates and 1.8M unique certificate chains.

149K (8.0%) of the certificates validate against the Mozilla

root store. The data comprises a total of 1.4G individual

SSL connections, of which 709.3M (50.42%) and 152.9K

(41.77%) come with valid certificates and chains, respectively.

To not introduce measurement errors, we exclude connections

from our analyses (and from Table 2) for which Bro reports

missing packets or analysis failures (e.g., violations of the

SSL state machine). These are in total 23.6M and 22.1M,

respectively.

Grid traffic accounts for a significant share of our data

set (81.05%/80.07% of all certificates/chains, yet only 2.43%

of connections). While Grid infrastructure uses SSL exten-

sively, it deploys an independent root hierarchy and hence its

certificates, according to our definition relative to the Mozilla

7Specifics of the validation logic tend to be hidden deeply in a
browser’s code, with no easy way to split it out, or access from ex-
ternal. Furthermore, browsers themselves can disagree in individual
cases.
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set, do not validate. We instead identify Grid activity by

separately looking for corresponding certificates. The Inter-

national Grid Trust Federation (IGTF) accredits Grid CAs

worldwide, and maintains a root store. However, we notice

that if we use that set directly, we miss out on a significant

number of certificates that, based on their subjects and is-

suers, appear Grid-related yet do not trace back to any of

these roots (likely local setups not integrated into the global

infrastructure and certificates for which we are missing chain

elements). Hence, we build a list of Grid certificates manu-

ally by matching on common Grid-related name patterns, and

consider that our base set for identifying Grid activity. We

have verified that of all non-valid certificates not tracing back

to this set, none would do so with the IGTF store. In other

words, we catch more Grid certificates, but do not miss any.In

the remainder of the paper, we generally split Grid activity

out separately; and we look at Grid specifics in §6.3.

5. EVOLUTION
Although our community encourages reappraisal of past

work, we only see few instances of such research in practice.

In this section, we revisit findings from Holz et al. [17] (from

now on referred to as Holz) by juxtaposing them with our data.

In their study, Holz use two types of data: (i) 16 active port-

443 scans of the Alexa Top 1M hosts, executed from different

geographic locations; and (ii) two packet traces recorded

passively at the Munich Scientific Research Network (MWN)

in Germany. The authors released the former on their web

site [16], and we use it for our comparision. In §5.1 we

begin with comparing certificate aspects, and then analyze

connection properties in §5.2.

5.1 Certificates
Our data set comprises a total of 1.9M unique certificates,

of which 366.2K (19.92%) are non-grid certificates. Holz’s

active scan data set consist of 556K unique non-grid certifi-

cates 8; their passive data set comprises two scans of 163K

and 102K, respectively. Holz generally exclude Grid certifi-

cates, so we break them out separately in the following.

For comparison, EFF’s Feb 2012 scan of the entire IPv4

address space on port 443 contains 7.2M certificates [25].

Passive monitoring catches a subset that, while smaller, is

the one most relevant to users as it captures what they use,

excluding numerous embedded devices, middle-boxes, and

other rarely accessed hosts on the Internet.

Cryptographic properties. The strength of a public key

depends on its type and bit length. The dominating pub-

lic key family in X.509 certificates is RSA; we only see 23

ECDSA and 11 DSA keys in our data set. Holz did not

examine the public key families, but for certificate signa-

ture algorithms, they find that DSA signatures are virtually

non-existent, which each DSA signature algorithm having a

frequency of 0.1% or less. This concurs with our findings:

we find 13 DSA and 114 ECDSA signatures in total.

8Number generated by revisiting their raw data.
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Figure 1: ECDF of the key lengths of certificates with an
RSA public key.

For RSA, the cryptography community discourages key

lengths less than 1024 bits [3]. However, Holz finds that their

latest scan still includes 55% certificates with smaller lengths,

while earlier scans include 20% more than that. Using the

data set they made available, we in addition examine the

subset of valid certificates in there and find that in the latest

set, 49% have a key length of 1024 bits or lower. Figure 1

shows key lengths in our data set for non-grid, Grid, validated,

and remaining certificates. For non-grid certificates, we find

that 64.71% have a key length of 1024 bits or less, which is

11% higher compared to Holz. However, when restricting

to valid certificates, only 9.03% have a key length of 1024

or less. We assume that some of the difference comes from

the active vs. passive approach. Overall, while we cannot

generally confirm the positive trend of increasing key length

observed by Holz, we find that only 1 in every 10 valid

certificates contains a weak key.

Chain Lengths. We define a certificate’s chain length as

one of two values, depending on whether the certificate vali-

dates. If it does, we use the the number of steps required to

do so. This number may be smaller or larger than the number

of certificates in the chain sent by the server (see §3.3). For

example, a certificate signed directly by a root has length 1.

If a certificate does not validate, we use the number of certifi-

cates in the chain directly, not counting the host certificate.

Thus, a self-signed certificate usually has length 0 as it does

not come with intermediates or roots.

Holz reports that 50–70% of certificate chains have length 0,

depending at the time and location of the scan.9 We re-

9We note that Holz uses a slightly different method to determine the
chain lengths, where they exclude all self-signed intermediates from
their observations, but do not exclude other unrelated certificates
present in valid chains. However, such cases are rare and only
impose a small bias towards larger lengths.
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Site Certificates Connections Time

Label Type Est. Users Total Grid 3 Validated Total w/ Certs 1 Validated Hours Period

US1 University 60,000 1,719,600 1,457,772 102,720 615,277,101 357,514,744 319,360,230 1,163 02/22–04/17
US2 Research site 250 48,450 38,519 8,793 9,372,928 5,047,586 3,916,195 1,382 02/17–04/16
US3 Research site 4,000 40,769 8,960 28,879 83,880,442 34,603,002 34,018,252 882 02/22–03/31
US4 University 50,000 177,727 74 95,772 697,431,016 359,822,923 351,751,087 1,207 02/22-04/16
X1 University 3,000 1,270 2 1,003 548,265 225,205 215,272 232 03/14–03/23

All 2 117,250 1,857,036 1,505,184 148,984 1,406,509,752 757,213,460 709,261,036 — —

1 Connections with no certificates tend to be session reuse; see §6.8.
2 The total reflects the number of unique items across all sites.
3 Certificates related to Grid infrastructure; see §6.3 for details.

Table 2: Summary of data set properties from contributing sites. For validation, we use the Mozilla root store.
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Figure 2: ECDF of keychain length.

examine their newest active scan and find 49.0% of the certifi-

cate chains to have a length of 0 when counting only unique

chains. When limiting to valid certificates, we find 19.6%

certificate chains of length 1 (one end host certificate directly

validating to a certificate in the root store). We further ob-

serve 38.0% valid chains with length 2 (one intermediate),

27.8% with length 3, and 14.2% with length 4 or greater.

Figure 2 shows the chain lengths we encounter in our data.

For non-grid certificates we see that the chain length gener-

ally is very low, with more than 99% having a length of 2

or less. For valid certificates, the median chain length is 2

(one intermediate certificate before arriving at a certificate

in the root store). This reflects good practice, as certificate

providers should use an intermediate to sign end-user cer-

tificates (see §6.2). For the remaining non-valid chains, we

observe almost always a chain length of 0 (98.6%), which

corresponds to self-signed certificates. Most Grid certificates

exhibit a length of 4 (97.1%).

Chain Validation. Holz finds that about 60% of the chains

from their active scans validate. We apply our extended

validation method from §3.3 to two of their scans and find that

it yields an additional 4%, indicating that a typical browser

would accept more certificates than the earlier estimate.

When looking at the number of different non-grid certifi-

cate chains that servers send, we see 366.2K unique chains of

which 41.77% validate, which is at least 20% less than what

Holz observed in their active and passive scans (depending on

the scan). The reason lies in the high number of automatically

generated non-validating certificates that we find in our data,

which we detail in §6.4. Because of the high number of Grid

certificates, the number of chains is also high (1.5M).

Note that the above analysis counts each unique certificate

exactly once, but each certificate can occur in one or more

connection. In fact, when not considering Grid connections,

51.68% of our connections validate and 1.27% do not. The

remainder of the connections do not transmit certificate data.

Validity Period. We also examine the validity period

of the certificates we encounter. For validating certificates,

the median validity period is 2 years. For non-validating

certificates it is 1 year, with a long tail. The tail of non-

validated certificates comes from applications that use self-

signed certificates with unusually high lifetimes. We find

a number of modes that correspond to lifetimes of specific

applications. For example, PandoClient uses a lifetime of

1000 years and the Windows Media Player Network Sharing
Service generates 100-year certificates, with the NetBIOS

name of a user inside the CN subject field. These numbers

match with the findings of Holz.

For Grid certificates, the median we encounter is 3 days,

which is higher than the median validity periods of grid cer-

tificates reported by Holz (11 hours). As an odd case, we see

90 certificates that have a negative lifetime (their expiry date

is smaller than their start date).

Signatures. Holz encounters about 17% certificates that

use the weak MD5 hash in their 2009 active scans, and about

10% or less in their 2011 active scans as well as in their

2010/2011 passive scans. Our data reflects this positive trend:

we see only 1.51% non-grid certificates using MD5. However,

44.05% of the Grid certificates use MD5.

5.2 Connections
Holz’ passive data set consists of two traces and includes
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Figure 3: Observed ciphers in all connections except Grid.

249M connections total. The data spans two two-week pe-

riods in September 2010 and April 2011. In contrast, our

data set includes 1.4 billion connections from 5 different sites

recorded over the course of about 1000 hours each, though

at different times. Note that, different than in the certificate

analysis above, Holz did not exclude Grid traffic from their

connection analyses.

Ciphers. Holz observe as the two most frequent ciphers

(i) RSA with RC4 and MD5 (about 22 and 30% of all con-

nections, respectively, in each of their two passive runs), and

(ii) RSA with AES-128 and SHA (about 18% and 21%). We

provide a breakdown of the ciphers we encounter in Figure 3,

which shows the top 10 used in all connections. These ci-

phers cover more than 98.8% of all connections. Compared

to Holz, a new cipher (ECDHE with RC4) takes the top place.

Looking at it more closely, more than 99.5% of the corre-

sponding connections involve servers in Google ASes; hence,

this difference seems a result of Google’s switch to ECDHE

in November 2011 to provide forward secrecy. [22] For other

connections, RSA with AES-128 and SHA is now most com-

mon. In general, each insecure cipher mentioned by Holz

occurs less frequent in our data set. The only exception to

this is the null cipher which dominates Grid connections.

6. NEW PERSPECTIVES
In this section we examine a number of aspects that past

studies have not further explored. We discuss overall traffic

properties like AS and port distributions (§6.1), intermediate

CA relationships (§6.2), Grid activity (§6.3) and other non-

validating certificates (§6.4), X.509 extensions (§6.5), SSL

extensions (§6.6), the SNI extension specifically (§6.7), ses-

sion reuse (§6.8), differences between vantage points (§6.9),

and finally reuse of private keys (§6.10).

6.1 Traffic Characteristics

Port Protocol Percentage

443 HTTPS 93.8%
993 IMAPS 1.5%

5223 Apple Push 1.1%
995 POP3s 0.60%

5228 Android Push 0.13%

Table 3: Top 5 TCP ports. Percentages relative to all
connections.

AS Description Percentage

15169 Google 32.3%
2914 NTT Communications 8.36%

32934 Facebook 8.05%
209 QWest 5.43%

2152 California State University 5.36%
714 Apple 4.76%

13414 Twitter 3.79%
8075 Microsoft 3.60%

14618 Amazon AES 2.55%
16509 Amazon 02 1.39%

Table 4: The 10 most popular server ASes. Percentages
relative to all connections.

Across all connections in our data set, we see a total of

17,743 unique TCP destination ports using SSL, i.e., about

a third of the available spectrum. Table 3 summarizes the

5 most common ports, which cover 97.10%. As expected,

HTTPS accounts for most of the activity by far. Potentially

more surprising, the Apple and Android Push services make

the list as well. We identify them by inspecting a random

sample of the corresponding certificates. From the 6th most

common port onward, we see a number of ports that seem

related to Grid activity or site-monitoring. The next port we

can identify is 465 (SSMTP) with 0.03% of connections (27th

most common port).

Table 4 breaks the connections down by server AS. We

see that Google accounts for almost a third of all SSL traffic.

Much of the ISPs’ traffic, and also that of Cal State, appear

due to Akamai (see §6.7). For Facebook and Twitter, we

assume that their APIs trigger most of their activity.

Finally, we examine the versions of the SSL and X.509

standards we observe. Across all connections, we see 94.0%

TLSv1 and 5.9% SSLv3. The remainder is split between

TLSv11 ( 0.006%), SSLv2 ( 0.0007%) and TLSv12 ( 3.6 ·
10−6 %). For X.509, version 3 is the de-facto standard with

SSL and, accordingly, we see that version for 99.8% of all

certificates. However, beyond v3, we indeed also see version

1 (0.12%), version 2 (exactly one!), and version 4 (0.03%).

The latter unfortunately does not exist and hence we assume

software is setting the version field incorrectly.10. Of the 577

“v4” certificates, Linksys/Cisco devices delivered 133, and

Grid proxies account for 438 (at different institutions) The

remaining 6 appear associated with custom applications (e.g.,

Kaleidescape for one). No root CA signed any of the “v4”

10The version fields counts from 0 (for v1), and hence one might
specify an intended v3 with the value of 3 (i.e., v4).
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certificates, nor the one v2.

6.2 Intermediary CAs
A well-known weakness of SSL concerns its insufficient

trust model, which leads users to implicitly trusting a large

set of CAs they have never heard of. The core of the problem

is the large size of a typical browser root store, Underap-

preciated, however, is the role that intermediate CAs play

who receive trust delegations from a root. We use our cer-

tificate data set for building a graph that spans the dominant

parts of the global trust structure for gaining insight into the

relationships between CAs.

In this section, we limit our analysis to certificates and

connections that validate against the Mozilla root store, which

currently includes 135 top-level certificates; we observe 76

of them in at least one valid certificate chain. We do not

see all because some CAs have multiple roots and use only

a subset thereof, or use them for purposes other than the

web. Other roots, in particular if from non-US CAs, see

less frequent use and remain unlikely to oocur at the sites

we monitor. Among the roots we see in use, we find CAs

from 26 different countries, including institutions that users

may have concern trusting (“The DHS shouldn’t be able

to sign certificates for Chinese sites or vice-versa” [26]).

Nevertheless, a browser will allow SSL connections to any

site that presents a certificate signed by any of them.

Each root CA may chose to delegate trust to intermediate

CAs, which then likewise become fully trusted with the same

authority as any root: intermediates can issue arbitrary certifi-

cates and further delegate signing themselves.11 In total, we

see certificates of 502 intermediate CAs. Some intermediate

CAs use more than one certificate, though, with differences

in specifics such as validity periods. Counting just unique

(issuer, subject) pairs yields a set of 451 unique intermediate

CAs. Adding in the roots, this results in 586 CAs authorized

to sign globally trusted certificates.12

For root CAs, it is in fact good practice to not sign cer-

tificates directly but via intermediaries. Accordingly, of the

76 roots we observe, 68 indeed delegate to an intermediary ;

29 of them to exactly one. However, even among those del-

egating, 10 do sign certificates directly as well. The largest

example in terms of intermediaries is the USERTRUST Net-

work with 30 client CAs and 2,292 signed certificates. Ex-

cluding roots that do not delegate, the median number of

intermediaries is 2, the mean 4.5, and the maximum 45 (GTE

CyberTrust).

The oldest intermediary certificate we encounter is from

VeriSign, its validity period started on April 16, 1997.13 The

newest is a SECOM Trust intermediate CA, starting Feb 16,

11There is a small exception: not all intermediate CAs may sign
Extended Validation certificates.

12This aligns with the EFF’s result of “650-odd organizations that
function as CAs trusted (directly or indirectly) by Mozilla or Mi-
crosoft”, which they derived from active scans. [12]

13Note that we do not know when the certificate was generated, as we
have seen several versions of it with validity periods ranging from

2012. In general, the average validity period we observe is

10 years (minimum 2, maximum 25). However, the lifetime

of a certificate is also constrained by the minimum lifetime

over all edges in the intermediary graph. For example, if a

root R creates intermediaries I1, I2, and I3 with respective

lifetimes 10, 5, and 30 years, then a certificate issued by I3
cannot have a lifetime beyond 5 years because it would stop

validating eventually.

Quantifying Impact. In order to quantify the influence of

intermediate CAs, we devise an impact measure along three

dimensions: Isubca(ca) represents the ratio between sub-CA

certificates recursively signed by ca (including ca itself) and

all CAs; Icert(ca) extends this definition to also include non-

CA certificates; and Iconn(ca) represents the ratio between

valid connections that have a certificate in Icert(ca) and all

valid connections.

A

B C

D FE G

JIH

Figure 4: An exemplary CA trust tree.

Figure 5: Deutsche Telekom trust tree.

To illustrate, consider the CA graph depicted by Figure 4.

Shaded nodes represent a CA certificate, and white nodes are

leaf certificates. The total number of nodes is 10, of which

5 are CAs. Then, we have Isubca(B) = 3/5, Isubca(A) = 1,

and Icert(B) = 7/10. If 42 connections out of 84 connec-

tions included a certificate signed by a CA within the sub-tree

2004 to 2016. We assume that the versions with later expiration
dates have been generated more recently.
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Figure 6: Impact of root and intermediate CAs. We show
Isubca, Icert, and Iconn for all root and intermediate CAs.

rooted at B, we would have Iconn(B) = 1/2. Note that Iconn
depends most on the vantage points of our data collection.

Figure 6 shows a scatter plot of all root and intermediate

CAs we have observed, plotting Isubca on the x-axis (log-

scale) and Icert on the y-axis. The plot further scales the size

of each point proportionally to Iconn. Table 5 summarizes

the root CAs maximizing these measures and, hence, show

the largest “footprint” in our data.

We see that a VeriSign certificates is the root that autho-

rizes (directly or indirectly) the most certificates in our data

set (16.3%). Furthermore, Deutsche Telekom AG (DT) has

the largest CA impact (Isubca(DT ) = 19.7%). Figure 5

shows the corresponding subgraph of the CA hierarchy with

126 intermediates. We see that DT authorizes almost all in-

termediates only indirectly via the German research network

DFN-Verein (Isubca(DFN) = 122). Upon inspecting that

one’s client CAs, we find all of them to be German research

institutions, presumably operating their own CAs to issue

certificates for local users and services. Any of these could

in principle issue a malicious certificate for independent do-

mains. Furthermore, a compromise at DFN-Verein would

require replacing the CA certificates at all these institutions.

In theory, it is possible to restrict certificates that an inter-

mediate CA can issue by including constraints in a X.509

Name Constraint extension. For example, a parent CA could

specify a limited DNS name space that restricts the certifi-

cates an intermediary can generate. In practice, however, this

extension seems hardly used; we encounter it in exactly one

intermediate CA certificate (for WISeKey, restricting it to

*.icc-cpi.int and *.icc.int). We tried to connect

to one server that deploys a certificate from WISeKey and

found that both Firefox and Opera refuse to load the page.

Safari, Internet Explorer, and Chrome did, yet it is hard to

tell if they honor name constraints at all. The lack of traction

for this extension is unfortunate as better support would help

to contain the impact of malicious CAs. Returning to DFN-
Verein example, it could likely limit most of its client CAs to

their corresponding institutions without interfering with their

operation.

6.3 Grid Infrastructure
The Grid infrastructure provides distributed computing

environments for data-intensive applications, typically in a

scientific setting [9]. Although grid connections only account

for 2.43% in our data set, they contribute 81.05% of the

unique certificates. This unexpected discrepancy motivates a

separate discussion; clearly, Grid software must be deploying

SSL differently than the web.

The Grid infrastructure uses an independent certificate

hierarchy. The International Grid Trust Federation (IGTF)

accredits Grid CAs worldwide; as of this writing, the IGTF

root store includes 87 CAs, of which we see 41 in use in our

data set.

The Globus project [14] introduced the Grid Security In-

frastructure (GSI) protocol suite [10], which evolved as a

popular middle-ware for Grid implementations. GSI employs

SSL and X.509 certificates to provide user authentication and

fine-grained access control in Grid deployments, tailored to

their batch-oriented architecture where users submit jobs that

harness a specific subset of the shared compute infrastructure.

Managing such dynamic use cases requires delegating trust

to specific Grid services, which then act on behalf of the user.

To this end, users generate short-lived proxy certificates from

their permanent long-term certificate [34].

A proxy certificate uses the standard X.509 format along

with a ProxyCertInfo extension that encapsulates a user-

specific delegation policy, such as how often delegation may

occur and the delegate’s capabilities. Validation of proxy

certificates occurs in two phases. First, one validates the

entity’s permanent certificate according to default X.509 rules

in RFC 3280. The second step validates the proxy certificate

according to RFC 3820, which involves (i) checking that the

ProxyCertInfo extension is present, (ii) that the subject

is derived from the issuer, (iii) that the specified maximum

path length still holds, and (iv) that the delegated capabilities

apply to the usage scenario.

The delegation process begins with a mutually authenti-

cated SSL handshake for which the connection originator

uses its generated proxy and the responder its own (non-

proxy) certificate. After the handshake, the responder creates

a public/private key-pair and sends back a certificate signing

request. The originator signs the request and sends the new

proxy certificate to the responder, who can now use the dele-

gated certificate to act on behalf of the originator. Because no

private keys travel over the channel, the delegation procedure

does not require encryption. Indeed, we find that 98.04%

of all Grid connections use a NULL cipher. The clear-text

delegation is one reason for that, another that many applica-

tions disable encryption to maximize the performance of data
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Isubca Icert Iconn

19.7% Deutsche Telekom AG 16.3% VeriSign (1) 30.2% GTE Corporation
10.3% GTE Corporation 16.0% Go Daddy Group 22.4% Equifax

6.7% GlobalSign nv-sa 14.0% GeoTrust 9.9% DigiCert
5.0% USERTRUST Network 8.3% USERTRUST Network 9.7% VeriSign (2)
3.4% AddTrust AB 7.3% Thawte 5.6% VeriSign (3)
2.8% StartCom Ltd. 6.4% AddTrust AB 5.6% VeriSign (1)
2.2% RSA Security 4.8% DigiCert 4.0% Entrust.net
2.0% PM/SGDN, France 3.5% Equifax 4.0% Thawte
2.0% Baltimore 3.2% GlobalSign nv-sa 3.4% GeoTrust
1.9% Entrust.net 2.7% GTE Corporation 3.4% Go Daddy Group

Table 5: Top 10 impact of root and intermediate CAs.

transfers.

With the delegation model, the roles of Grid endpoints

do not match well with a standard client/server model. For

example, in a GridFTP transfer between two servers, a user

may first delegate a proxy certificate to each GridFTP server,

which the two then use to connect to each other. As a conse-

quence, we find Grid user certificates in our data set although

at the SSL level, we do not record any client-side information.

That also explains the large number of Grid certificates we

see in total, as generally each delegation involves creating

a new certificate. Accordingly, we often see many unique

certificates for a Grid server; in one, case we encounter more

than 87K certificates with a single host.

A proxy certificate’s validity period is typically in the order

of hours to limit the consequences of an account compromise;

longer-lived jobs however also require longer intervals. [34,

20] In our data set, we find a median lifetime of 2.98 days

among all Grid certificates.
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Figure 7: Delegation path length measured by the number
occurrences of CN fields in the subject of Grid certificates.

The Grid implementations we see use the certificate’s sub-

ject field in a very specific way. In each delegation phase, the

new certificate’s subject inherits the value of the issuer and

refines it by appending an additional value of CN=proxy or

Certs Issuer

455 U.S. Government

145 CA Cert Root CA1

143 PlanetLab2

101 Government of Korea
94 Electronic Arts OTG3 Certificate
66 KISA Korea Certification Authority
62 Government of Korea Root CA
38 Autoridade Certificadora Raiz Brasileira
28 Intel Root CA
25 T-Mobile USA, Inc. Root CA

1 CA Cert [5] is a community driven root that
issues free certificates.

2 Aggregating 143 certificates from four CA
certificates with the same subject.

Table 6: Top 10 private CAs with number of child certifi-
cates we see.

CN=limited proxy in order to comply with the above

mentioned validation procedure. We can exploit this property

to determine the delegation path length as the number of CN
fields occurring in the subject field. Figure 7 shows the path

lengths for all Grid certificates. Most paths have length 1,

and path lengths 2–7 range from 2,000 to 6,000.

44.05% of the Grid certificates we encounter use MD5 sig-

natures, which is considerably higher than the 1.51% among

all certificates. This property results from some Grids using

old software. Indeed, the IGTF is currently working to move

CAs to SHA-2 by January 2013 [19].

6.4 Other Certification Authorities
If we ignore Grid certificates, there are 202.8K certificates

in our data set that do not validate against the Mozilla root

store. In §6.7, we already find 90.83% of these to belong to

Tor, which leaves us with 18.6K certificates not yet classified.

Of these, 40.81% are self-signed non-CA certificates, and

16.39% are CA certificates. The latter, however, also contain

self-signatures; we inspect some and find self-signed CAs

associated with VMware, Parallels and Plesk.

Table 6 shows a break-down of the remaining other certifi-

cates by the top 10 alternative certificate roots. Interestingly,

the PlanetLab certificates are the main source of elliptic curve

keys in our data set. Their certificates have an IP address and

a port in their subject field, corresponding to the server/port

9



Extension % Certs % Valid Certs Purpose

keyUsage 87.5 % 90.0 % Defines purpose of the certificate key.
extendedKeyUsage 83.9 % 98.2 % Extends key purpose in addition to keyUsage.
crlDistributionPoints 83.3 % 99.99% Defines how to obtain CRL information.
basicConstraints 81.1 % 94.1 % Identifies a CA certificate.
authorityInfoAccess 7.7 % 93.3 % Specifies how to access issuer’s certificate.
authorityKeyIdentifier 7.3 % 83.9% Defines the public key used to sign the certificate.
subjectKeyIdentifier 6.3 % 72.5 % Identifies the key of the certificate.
certificatePolicies 5.9 % 71.1 % Specifies terms under which certificate has been issued.
subjectAltName 5.4% 64.3 % Defines additional identities (mostly domains) for the subject.
proxyCertInfo 1.8 % 0 % Indicates proxy certificates and restrictions.
logoType 1.6 % 19.4 % Embeds logo into certificate.

Table 7: X.509 extensions observed in > 1% of all certificates. Percentages relative to all certificates and valid certificates,
respectively. All extensions are defined in RFC 3280, except proxyCertInfo (RFC 3820) and logoType (RFC 3709).

tuple of the underlying connection.

Finally, when eliminating another 20.23% certificates that

have been expired, we are left with a small remainder of

22.55% non-validating certificates. They include self-signed

certificates for which Issuer and Subject do not match (which

we see, e.g., with some Western Digital products), and cer-

tificates for which we cannot follow the chain because of

missing or expired intermediates, damaged certificates, or

missing keys.

6.5 X.509 Extensions
Since version 3, the X.509 standard allows for the inclusion

of custom certificate extensions (RFC 5280). Each extension

includes an Object Identifier (OID) to define its type, and

an ASN.1 data structure. Across all certificates, we saw 57

unique extensions in use; however the number decreased to

21 in validated certificates. Table 7 shows the most common

ones. We note that, in general, the precise semantics of

many extensions remain ill-defined and subject to different

interpretations. [32].

6.6 SSL Client Extensions
Since TLS 1.0, the SSL protocol also allows for custom ex-

tensions. At the beginning of a connection, client and server

exchange a list of the extensions they each support in the

clear.We observe clients announcing support for a total of 13

extensions, summarized in Table 8. Some of the extensions

are still in draft status and difficult to identify.14 In 74.37%

of all connections we see support for at least one client ex-

tension. Likely the most interesting extensions are server
name indication (enabling virtual hosting) and stateless ses-
sion ticket (enabling resuming past sessions without a further

key exchange). We discuss them separately in §6.7 and §6.8,

respectively. We cannot inspect the server-side because Bro

2.0 does not extract extensions from server traffic.

6.7 SNI Support
The server name indicator SSL extension (RFC 6066) ad-

dresses a long-standing problem: traditionally, SSL requires

14The SSL protocol refers to extensions by numerical values but the
official list that IANA maintains does not include most of the drafts.

Percentage Domain

36.5% Google
15.9% Facebook
11.7% Akamai

4.7% Twitter
2.6% (Not set)
2.9% Apple
2.3% Microsoft
1.0% Netflix

0.99% Yahoo
0.46% Mozilla

Table 9: Most popular SNIs – top 20 grouped by en-
tity (see text). Percentages are relative to all connections
using the extension.

servers to associate only a single certificate with each pair

(IP address, port), as otherwise they could not tell which to

pass along to a client. That, however, prevents web servers

from virtually hosting more than one site. The SNI extension

solves the restriction by enabling clients to specify a target

host name, similar to the Host header in clear-text HTTP 1.1.

SNI also helps with another problem: while a certificate can

specify multiple host names, their number remains limited

and any change requires issuing a new certificate. With SNI,

one can instead use separate certificates for each name.

However, for a web server to rely on SNI requires com-

prehensive client support, as otherwise it would exclude a

significant user population. We examine SNI availability in

our data set and find support with 82.02% of all client/server

pairs. (82.38% when limiting to HTTPS port 443; recall that

we cannot do a per-client analysis). For such a rather impor-

tant feature, we deem this number low, in particular given

that first implementations started offering SNI as early as

2004 and the IETF standardized the extension in 2006.

Examining client requests, we observe a total of 1M unique

SNI values, referring to 868.5K 2nd-level domains. Table 9

shows the most popular ones; for clarity, we aggregate the top

20 2nd-level domains manually into groups representing the

main entity they belong to (e.g., Google includes google.
com, google-analytics.com, youtube.com, and

others).15 Oddly, 2.6% of all connections set the SNI exten-

15We removed one site at 0.55% that was accessed mainly from one
of our collection sites and hence could reveal its identity.
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Extension Percentage Purpose Definition

server_name_indication 77.9 % Client-provided server name. RFC 3546
elliptic_curves 75.3% Support for elliptic curve cryptography. RFC 4492

ec_points_formats 75.3% Support for elliptic curve cryptography. RFC 4492
session_ticket 43.4 % Stateless session reuse. RFC 5077

renegotiation_info 40.0 % Key renegotiation secure against MITM. RFC 5746
next_protocol 25.4 % Support for Google’s SPDY. Internet Draft, expired 07/2010. [21]
status_request 24.0 % Requests OCSP response from the server. RFC 6066

cert_type 0.0049 % Support for other certificate types. RFC 6091
encrypted_client 0.0033 % Support for encrypted client certificates. Internet draft, expired 04/2012. [23]

origin_bound_certificate 0.0033 % Dynamic certs to replace login cookies. Internet Draft, expired 03/2012. [2]
signature_algorithm 0.0022 % Indicate signature/hash algorithms. RFC 5246

extended_random_values 0.0013 % Extended bit-length for random values. Internet Draft, expired 03/2009 [30]
heartbeat 0.00062 % Implements keep-alives. RFC 6520

Table 8: Observed SSL client extension support. Percentages relative to all valid connections.

sion but do not provide a hostname. Comparing the table

with the ASes in Table 4, we note that the SNI break-down

reveals insight into the content rather than the provider (e.g.,

much of the NTT AS-traffic is due to Akamai).

The set of 1M SNI values exhibits a long tail: less than 1%

of all connections use 99% of the values. Inspecting a sample

manually, we find many clients that specify what appears to

be a random host name, such as www.fl4i5z3cpys.com,

which explains the large total number. The corresponding

connections come with certificates exhibiting the same regu-

lar structure: Issuer and Subject match the pattern CN=www.
[randomstring].[tld]. It turns out that Tor is behind

these: we checked about 1,500 hosts returning such certifi-

cates and found them all to be Tor nodes. We speculate that

Tor uses the randomization to evade detection. Excluding the

Tor SNIs leaves us with 258.3K values; the top 100 SNIs in

there however still account for more than 92%.

To understand whether servers indeed use a supplied SNI,

we examine IP addresses that serve more than one valid cer-

tificate chain (excluding Grid traffic where this is common;

see §6.3). Among the 4.4K IPs (1.73%) that we find, 57.92%

are from Google’s AS 15169. It appears that Google respects

the SNI to serve separate certificates; however, in its absence

they return different ones that instead include a larger number

of alternative DNS names. Excluding Google, we examine a

random sample of further IP addresses, yet do not find other

hosts using SNI to serve different certificates. What we in-

stead commonly see is a server returning different certificates

that are however all valid for the same IP. We assume that

these are load-balancer setups. Finally, we also notice fur-

ther cases of multiple certificates because an older one has

expired. In conclusion, we do not find significant reliance on

SNI outside of Google.

However, we do see certificates with a large set of seem-

ingly independent Common Names, which suggests that peo-

ple are working around the lack of direct support for virtual

hosting. If we look at the longest certificates in our data set

(in terms of bytes), we indeed find several of them at the top.

In one example, a service provider lists 199 independent host

names—and thereby gives away its customer list.

6.8 Session Reuse
Our data set provides us with insight into the deployment

of SSL session reuse, which constitutes a mechanism for

skipping a full SSL key exchange by recycling previous state

for follow-up sessions between the same client/server pair.

Reuse primarily helps the server to shed load16

SSL defines two methods to reuse a session. One of them

is part of the main protocol specification (RFC 2246) and

leverages a unique, server-generated session identifier that

the client may chose to retain for sending back later. This ap-

proach requires both client and server to maintain a mapping

between the identifier and the negotiated security parameters.

The second method introduces an SSL protocol extension

that, from the server’s perspective, enables stateless reuse

(RFC 5077). In this case, the server sends a session ticket to

the client that includes all it later needs to resume, encrypted

with a server-only key. When a client wants to reuse a session,

it provides the ticket back to the server.

In total, we observe reuse in 35.07% of all SSL connections.

54.82% of all servers reused sessions (53.49% when only

considering port 443). Due to protocol intricacies that we

omit for brevity, we cannot directly decide which type of

reuse a connection employs without having access to server-

side extensions (which Bro does not extract in its current

version). However, in 9.39% of all connections we see the

server providing a stateless session ticket, from a total of

54.82% of all servers . As such, we assume that a large share

of reused sessions do indeed use the newer, stateless variant.

For stateless reuse, we can inspect the ticket lifetimes that

servers provide to give a hint to the client how long to store a

ticket. We encountered 272 different lifetimes. The most com-

mon life times are 28h, 0, 4h, 86,000 seconds (23h:53m:20s),

and 5m. (0 zero means “unspecified”). We see the 28h value

almost exclusively with Google servers , which account for

5.83% of all the lifetimes. The maximum lifetime we en-

counter is 108.35 years, the minimum lifetime other than 0

is 60 seconds. The average lifetime is just over 80 hours, the

16[6] finds that “RSA computations are the single most expensive
operation in TLS, consuming 13-58% of the time spent in the web
server”.
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US1 US2 US3 US4 X1

Ui valid 46.12% 6.49% 11.78% 39.87% 11.76%
Ui grid 99.99% 99.87% 99.06% — —
Ui other 74.15% 72.11% 38.79% 49.98% 76.83%

Ci valid 31.80% 0.38% 2.28% 25.63% 0.07%
Ci grid 96.84% 2.55% 0.58% — —
Ci other 58.17% 0.40% 0.56% 20.18% 0.22%

Table 10: Vantage point comparison by uniqueness Ui

and contribution Ci per contributing site. We omit grid
values for US4 and X1 due to a lack of sufficient data.

median is 28 hours.

6.9 Vantage Point Comparision
Unlike active scanning, passive monitoring leads to data

sets that reflect user activity at specific sites. To quantify

diversity across our collection points, we compare our n = 5
sites with two metrics, uniqueness and contribution. For a

site i, the uniqueness Ui represents the ratio of certificates

only seen there, ĉi, to all its certificates ci:

Ui :=
|ĉi|
|ci| where ĉ := ci −

⋃
i �=j

cj ∀i ∈ {1, . . . , n}.

A high value of Ui means that at site i, a large share of the

certificates remain specific to that location.

The contribution Ci of site i represents the percentage of

certificates ĉi that site i adds to the whole data set:

Ci :=
|ĉi|

|⋃n
i=1 ci|

.

I.e., a high contribution indicates that the site’s certificates

add significant value to the aggregate data set.

Table 10 shows uniqueness and contribution for valid, Grid,

and remaining (i.e., other) certificates across our sites. We

see that among the valid certificates, 46.12% are unique at

US1 and 39.87% at US4. As expected, the majority of cer-

tificates at smaller sites constitutes a large subset of those

at larger sites. Conversely, the other remaining certificates

tend to be more site-specific. Uniqueness of Grid certificates

approaches 100%, as many of these serve as one-time authen-

tication tokens. Regarding the contribution, US1 and US4

contribute the majority of valid and remaining certificates to

our data set (31.80% and 25.63%, respectively). Nearly all

Grid certificates stem from US1, which we speculate might

be due to a particular Grid service in use there that deploys

delegation extensively (see §6.3).

6.10 Private Key Reuse
SSL best-practice recommends using a new public/private

key pair for each certificate, even though technically multiple

certificates can share a key. While reusing keys is not a

security problem per se, it increases the impact of a key

compromise. We measure the amount of key reuse across all

our certificates and find it at the expected low level overall:

only 5.9K non-CA17 certificates share their private key with

at least one other instance, 1.4K keys share across at least 10

certificates, and 1K across at least 100. In total, we find 2K

private keys in more than one certificate.

Inspecting the reuse cases more closely, we find Google to

account for a large share. 1.1K Google certificates share their

key with others; often with many. In one case, the same key

belongs to 223 certificates, all with a different set of Google-

themed Common Names. However, we also see different keys

in use for the same Common Name. There are 64 Google

certificates that do not share a key.

Besides Google, the next largest key re-user is an e-com-

merce solution provider that operates online shops for cus-

tomers. Here, we find one key in use with 77 different web

sites, presumably all under the control of the provider (the

Common Names resolve to 73 IPs within a continuous block

of twelve /24 subnets). However, even when assuming that

their customers have no direct access to the private key, any

compromise at the provider would affect all the sites. We find

several further examples of similar hosting setups. While we

cannot know their motivation for reusing keys, we suspect

its mostly the convenience of not having to manage separate

keys per customer.

7. NOTARY SERVICE
The data collection we describe in §3 is an ongoing effort

that we intend to maintain and extend to further sites. We

deem the collected SSL data a valuable resource that we want

to make accessible to the community. However, we need to

account for sensitivity concerns at our data providers (see §8)

and hence cannot release the raw data. As a trade-off, we

instead focus on the set of web certificates we observe, which

is likely the most valuable part for the broader community as

it provides clients with a measure of certificate reputation.

In the spirit of existing efforts—such as Perspectives [29],

Convergence [1], and the EFF SSL Observatory [11]—we

operate a public SSL notary service that offers an online API

to query whether any of our collection sites has observed

a specific certificate. [18] The interface is DNS-based and

we provides a superset of the information that was available

in Google’s (now defunct) SSL catalog [24] so that existing

clients (including Convergence servers) can easily leverage

it. When queried with the SHA1 of a certificate, the notary

replies with a TXT record indicating the day we first saw the

certificate (relative to 1/1/1970), the most recent day we saw

it anywhere, the number of days in between when at least one

site reported it, and the information if the certificate currently

validates against the Mozilla root store. For example, to

check for one of Google’s certificates using dig:

# dig txt +short C19[..]58.notary.icsi.berkeley.edu
"version=1 first_seen=15387 last_seen=15450 \
times_seen=64 validated=1"

17We exclude CAs here as we find them sometimes reusing keys
across different versions of a certificates.
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We include all certificates into the notary that we observe

at any of our collection points, except those related to Tor

and Grid activity. We exclude the latter primarily for privacy

reasons, yet also deem them less interesting for typical usage

scenarios. In the future, we plan to offer an alternative inter-

face that also reports a certificate’s validity at the time of the

query, as determined by our validation process (see §3.3). We

host the notary with a setup similar to Team Cymru’s Mal-

ware Hash Registry [7], and it can handle a large numbers of

certificates on the server side.

8. COLLABORATING WITH OPERATIONS
Researchers in our community often find operators reluc-

tant to provide real-world data for scientific studies. For this

effort, we work with five operational environments that all

have agreed to instrumenting their networks for recording

and exporting information we extract from their traffic in real-

time, with full payload access for the analysis application. As

such, we see our work also as a case study on overcoming

the hurdles that researchers often face when interacting with

operations, and we discuss our experiences in the following.

Generally, at the sites included in this study, we found

operators with an interest in supporting our research effort

and contributing value to the larger community. We consider

such support a crucial prerequisite as it provides sites with

a motivation to invest time into the collaboration. With that

perspective, participation becomes a question of realistically

trading off benefits with risks. None of the sites took that

decision lightly, yet they all eventually approved going ahead.

The key to a successful collaboration lies in accepting and

addressing the constraints that operators face. Most impor-

tantly, we design our study to minimize the risk of exposing

sensitive site information, at the cost of some analyses we

cannot perform, such as per-client statistics. Specifically, we

(i) limit the collected features to a subset generally deemed

low sensitive; (ii) clearly separate between data for internal
analysis and public access via the notary; and (iii) accept

that we generally do not control the collection setups and

may hence experience artifacts such as non-continuous time

intervals and packet loss.

When operators were assessing the features we collect,

their main concern was the risk of revealing sites their users

access. For the notary, we account for that by leaving all

sources anonymous and providing coarse-grained, aggregated

information. For the raw data the risk of a deanonymizing

attack remains larger: if attackers got access, they could

check for specific (client, server) pairs, and likely also target

individual clients by brute-forcing the IPv4 address space.

Our collaborators are aware of this risk, and they ultimately

deemed it sufficiently low. However, such an assessment

remains an environment-specific decision that can go either

way. Indeed, we also talked to a site not included in this study

that eventually could not approve their participation.

9. CONCLUSION
In this work we offer a large-scale study of SSL traffic

collected passively in five operational network environments.

Continuing the spirit of the community’s past work, we re-

assess previous findings with a broader data set, examine a

range of further aspects that have not yet seen much attention,

and contribute to improving end-user security by making the

collected web certificates available to the public in the form

of an online notary service.

Overall, we observe that real-world SSL/X.509 deploy-

ment exhibits a complex structure, with many specifics re-

maining ill-defined and left to interpretation. Examples in-

clude the process of validating certificates and interpreting

semantics of protocol fields and extensions. As such, the most

appropriate perspective on SSL may be a pragmatic “it works,

if it works”, with a corollary observation that some features

aiming to improve weaknesses are not yet sufficiently sup-

ported across implementations (e.g., enforcing constraints on

certificates that intermediate CAs can issue; virtual hosting

of SSL servers). We conclude that, from a broad perspective,

the system in fact works better than one might expect, mainly

because SSL implementations tend to work around technical

deficiencies. That observation however does not change some

of the inherent weaknesses SSL exhibits, most importantly

its insufficient trust model that depends crucially on a much

too large set of players. Our analysis of CA relationships

demonstrates the risks involved, yet also shows that there is

structure that a fine-granular permission model could exploit.

We are continuing our data collection and intend to add

further sites to the set. Doing so will further increase cover-

age and allow for a long-term analysis showing trends and

developments over time. We also see our work as a case study

on working successfully with operations to provide research

studies with real-world data, and we will explore extending

our feature collection to other portions of the sites’ traffic.
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